The dependence of the ion effective heating on the poloidal (reconnection) and toroidal (guide) magnetic fields during magnetic reconnection in the presence of a guide magnetic field is investigated by means of particle simulations, which mimic merging plasmas in a spherical tokamak. In previous works, our simulations demonstrated that the ion temperature perpendicular to the magnetic field grows mainly in the downstream, in which ring-shaped velocity distributions are formed. This means that ions are effectively heated. The basic theory explains that the ring-shaped distribution is formed by the ions which rotate around the guide magnetic field while E × B drifting. In this work, the basic theory is extended to a more general theory including not only a ring-shaped distribution, but also a circular-arc-shaped distribution. The generalized theory explains that the effective temperature changes by the radius and the central angle of the arc-shaped velocity distribution and conjectures the dependence of the ion effective heating on the poloidal and toroidal magnetic fields. The simulations show that the ion heating energy is proportional to the square of the poloidal magnetic field, whereas the ion temperature decreases as the toroidal field is larger, but the toroidal field dependence becomes small for the regime of high toroidal field. These tendencies are consistent with those observed in experiments.

1.
M.
Gryaznevich
,
R.
Akers
,
P. G.
Carolan
,
N. J.
Conway
,
D.
Gates
,
A. R.
Field
,
T. C.
Hender
,
I.
Jenkins
,
R.
Martin
,
M. P. S.
Nightingale
,
C.
Ribeiro
,
D. C.
Robinson
,
A.
Sykes
,
M.
Tournianski
,
M.
Valovic
, and
M. J.
Walsh
,
Phys. Rev. Lett.
80
,
3972
(
1998
).
2.
M.
Yamada
,
Phys. Plasmas
14
,
058102
(
2007
).
3.
Y.
Ono
,
T.
Kimura
,
E.
Kawamori
,
Y.
Murata
,
S.
Miyazaki
,
Y.
Ueda
,
M.
Inomoto
,
A. L.
Balandin
, and
M.
Katsurai
,
Nucl. Fusion
43
,
789
794
(
2003
).
4.
Y.
Ono
,
Y.
Hayashi
,
T.
Ii
,
H.
Tanabe
,
S.
Ito
,
A.
Kuwahata
,
T.
Ito
,
Y.
Kamio
,
T.
Yamada
,
M.
Inomoto
, and
TS-Group
Phys. Plasma
18
,
111213
(
2011
).
5.
Y.
Ono
,
H.
Tanabe
,
Y.
Hayashi
,
T.
Ii
,
Y.
Narushima
,
T.
Yamada
,
M.
Inomoto
, and
C. Z.
Cheng
,
Phys. Rev. Lett.
107
,
185001
(
2011
).
6.
Y.
Ono
,
H.
Tanabe
,
T.
Yamada
,
M.
Inomoto
,
T.
Ii
,
S.
Inoue
,
K.
Gi
,
T.
Watanabe
,
M.
Gryaznevich
,
R.
Scannell
,
C.
Michael
, and
C. Z.
Cheng
,
Plasma Phys. Controlled Fusion
54
,
124039
(
2012
).
7.
M.
Yamada
,
J.
Yoo
,
J.
Jara-Almonte
,
H.
Ji
,
R. M.
Kulsrud
, and
C. E.
Myers
,
Nat. Commun.
5
,
4774
(
2014
).
8.
J.
Yoo
,
M.
Yamada
,
H.
Ji
,
J.
Jara-Almonte
, and
C. E.
Myers
,
Phys. Plasmas
21
,
055706
(
2014
).
9.
H.
Tanabe
,
T.
Yamada
,
T.
Watanabe
,
K.
Gi
,
M.
Inomoto
,
R.
Imazawa
,
M.
Gryaznevich
,
R.
Scannell
,
N. J.
Conway
,
C.
Michael
,
B.
Crowley
,
I.
Fitzgerald
,
A.
Meakins
,
N.
Hawkes
,
K. G.
McClements
,
J.
Harrison
,
T.
O'Gorman
,
C. Z.
Cheng
,
Y.
Ono
, and
The MAST Team
,
Nucl. Fusion
57
,
056037
(
2017
).
10.
H.
Tanabe
,
T.
Yamada
,
T.
Watanabe
,
K.
Gi
,
M.
Inomoto
,
R.
Imazawa
,
M.
Gryaznevich
,
C.
Michael
,
B.
Crowley
,
N. J.
Conway
,
R.
Scannell
,
J.
Harrison
,
I.
Fitzgerald
,
A.
Meakins
,
N.
Hawkes
,
K. G.
McClements
,
T.
O'Gorman
,
C. Z.
Cheng
,
Y.
Ono
, and
MAST Team
,
Phys. Plasmas
24
,
056108
(
2017
).
11.
N. F.
Loureiro
,
A. A.
Schekochihin
, and
A.
Zocco
,
Phys. Rev. Lett.
111
,
025002
(
2013
).
12.
R.
Numata
and
N. F.
Loureiro
,
J. Plasma Phys.
81
,
305810201
(
2014
).
13.
J.
Liang
,
Y.
Lin
,
J. R.
Johnson
,
Z. X.
Wang
, and
X.
Wang
,
Phys. Plasmas
24
,
102110
(
2017
).
14.
S.
Usami
,
R.
Horiuchi
, and
H.
Ohtani
,
Phys. Plasmas
24
,
092101
(
2017
).
15.
S.
Usami
,
R.
Horiuchi
,
H.
Ohtani
,
Y.
Ono
, and
H.
Tanabe
,
Plasma Fusion Res.
13
,
3401025
(
2018
).
16.
R.
Horiuchi
and
T.
Sato
,
Phys. Plasmas
4
,
277
(
1997
).
17.
W.
Pei
,
R.
Horiuchi
, and
T.
Sato
,
Phys. Rev. Lett.
87
,
235003
(
2001
).
18.
W.
Pei
,
R.
Horiuchi
, and
T.
Sato
,
Phys. Plasmas
8
,
3251
(
2001
).
19.
H.
Ohtani
and
R.
Horiuchi
,
Plasma Fusion Res.
4
,
024
(
2009
).
20.
S.
Inoue
,
Y.
Ono
,
H.
Tanabe
,
R.
Horiuchi
, and
C. Z.
Cheng
,
Nucl. Fusion
55
,
083014
(
2015
).
21.
K.
Fujimoto
,
Front. Phys.
6
,
119
(
2018
).
22.
R.
Horiuchi
and
T.
Sato
,
Phys. Plasmas
1
,
3587
3597
(
1994
).
23.
P.
Ricci
,
G.
Lapenta
, and
J. U.
Brackbill
,
Geophys. Res. Lett.
29
,
3-1
, (
2002
).
24.
P. L.
Pritchett
,
J. Geophys. Res.
115
,
A10208
, (
2010
).
25.
C. Z.
Cheng
,
S.
Inoue
,
Y.
Ono
, and
R.
Horiuchi
,
Phys. Plasmas
22
,
101205
(
2015
).
26.
X.
Guo
,
R.
Horiuchi
,
C. Z.
Cheng
,
T.
Kaminou
, and
Y.
Ono
,
Phys. Plasmas
24
,
032901
(
2017
).
27.
J. F.
Drake
,
M.
Swisdak
,
T. D.
Phan
,
P. A.
Cassak
,
M. A.
Shay
,
S. T.
Lepri
,
R. P.
Lin
,
E.
Quataert
, and
T. H.
Zurbuchen
,
J. Geophys. Res.
114
,
A05111
, (
2009
).
28.
J. F.
Drake
,
P. A.
Cassak
,
M. A.
Shay
,
M.
Swisdak
, and
E.
Quataert
,
Astrophys. J.
700
,
L16
(
2009
).
29.
J. F.
Drake
and
M.
Swisdak
,
Phys. Plasmas
21
,
072903
(
2014
).
30.
E.
Möbius
,
D.
Hovestadt
,
B.
Klecker
,
M.
Scholer
,
G.
Gloeckler
, and
F. M.
Ipavich
,
Nature
318
,
426
(
1985
).
31.
C. S.
Wu
,
Astrophys. J.
472
,
818
826
(
1996
).
32.
C. S.
Wu
,
Y.
Li
,
J. K.
Chao
,
P. H.
Yoon
, and
L. C.
Lee
,
Astrophys. J.
495
,
951
956
(
1998
).
33.
M. A.
Shay
,
J. F.
Drake
,
B. N.
Rogers
, and
R. E.
Denton
,
J. Geophys. Res.
106
,
3759
3772
, (
2001
).
34.
T.
Sato
and
T.
Hayashi
,
Phys. Fluids
22
,
1189
1202
(
1979
).
You do not currently have access to this content.