Microwave microplasmas ignited in argon are studied using a one-dimensional particle-in-cell with Monte Carlo collision (PIC-MCC) approach. One-dimensional PIC-MCC simulations are performed at specified input power densities to determine the influence of the applied frequency (ranging from 1 to 320 GHz), pressure, and total deposited power on the plasma dynamics. The frequency response study performed at a fixed input power density shows the presence of off-axis peaks in the electron number density profile at intermediate frequencies. These peaks are attributed to the interplay between the production of hot electrons by the oscillating sheath and their inability to diffuse sufficiently at higher operating pressures, thereby resulting in enhanced ionization at off-axis locations. This is confirmed by the pressure dependence study which shows that the electron number density peaks at the mid-point when the microplasma is ignited at lower pressures. As the excitation frequency is increased further, the sheath oscillation heating decreases and eventually vanishes, thereby requiring the bulk plasma to couple power to the electrons which in turn leads to an increase in electron temperature in the plasma bulk and the electron number density peak appearing at the mid-point. When the power coupled to the microplasma is decreased, the sheath oscillation at a given frequency decreases, thereby leading to higher contribution from heating in the bulk plasma which leads to the disappearance of off-axis peaks even at intermediate frequencies. The microplasma dynamics at all conditions considered in this work demonstrate the interplay between the electron momentum transfer collision frequency, the angular excitation frequency, and the plasma frequency.
Skip Nav Destination
Article navigation
January 2019
Research Article|
January 17 2019
A kinetic study of electron heating and plasma dynamics in microwave microplasmas
Arghavan Alamatsaz;
Arghavan Alamatsaz
Department of Mechanical Engineering, University of California Merced
, Merced, California 95343, USA
Search for other works by this author on:
Ayyaswamy Venkattraman
Ayyaswamy Venkattraman
a)
Department of Mechanical Engineering, University of California Merced
, Merced, California 95343, USA
Search for other works by this author on:
a)
Electronic mail: vayyaswamy@ucmerced.edu
Phys. Plasmas 26, 013512 (2019)
Article history
Received:
November 20 2018
Accepted:
December 28 2018
Citation
Arghavan Alamatsaz, Ayyaswamy Venkattraman; A kinetic study of electron heating and plasma dynamics in microwave microplasmas. Phys. Plasmas 1 January 2019; 26 (1): 013512. https://doi.org/10.1063/1.5082307
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00
Citing articles via
Related Content
Operating modes of field emission assisted microplasmas in the microwave regime
J. Appl. Phys. (September 2016)
Microwave microplasma parameters at extremely high driving frequencies
Phys. Plasmas (January 2019)
Theory and analysis of operating modes in microplasmas assisted by field emitting cathodes
Phys. Plasmas (May 2015)
High frequency impedance characteristics of a tunable microplasma device
J. Appl. Phys. (April 2021)
Glow and arc modes in field emission driven microplasmas
AIP Conference Proceedings (December 2014)