The plasma-wall transition is studied by using 1d3V particle-in-cell simulations in the case of a one dimensional plasma bounded by two absorbing walls separated by 200 Debye lengths (λd). A constant and oblique magnetic field is applied to the system, with an amplitude such that r < λd < R, where r and R are the electron and ion Larmor radii, respectively. Collisions with neutrals are taken into account and modelled by an energy conservative operator, which randomly reorients ion and electron velocities. The plasma-wall transition (PWT) is shown to depend on both the angle of incidence of the magnetic field with respect to the wall, θ, and on the ion mean-free-path to Larmor radius ratio, λci/R. In the very low collisionality regime (λciR) and for a large angle of incidence, the PWT consists of the classical tri-layer structure (Debye sheath/Chodura sheath/pre-sheath) from the wall towards the center of the plasma. The drops of potential within different regions are well consistent with already published models. However, when sinθR/λci or with the ordering λci<R, collisions cannot be neglected, leading to the disappearance of the Chodura sheath. In this case, a collisional model yields analytic expressions for the potential drop in the quasi-neutral region and explains, in qualitative and quantitative agreement with the simulation results, its reversal below a critical angle derived in this paper, a regime possibly met in the scrape-off layers of tokamaks. It is further shown that the potential drop in the Debye sheath slightly varies with the collisionality for λciR. However, it tends to decrease with λci in the high collisionality regime, until the Debye sheath finally vanishes.

1.
P.
Chabert
and
N.
Braithwaite
,
Physics of Radio-frequency Plasmas
(
Cambridge University Press
,
2011
), pp.
1
17
.
2.
R. A.
Pitts
,
J. P.
Coad
,
D. P.
Coster
,
G.
Federici
,
W.
Fundamenski
,
J.
Horacek
,
K.
Krieger
,
A.
Kukushkin
,
J.
Likonen
,
G. F.
Matthews
,
M.
Rubel
, and
J. D.
Strachan
,
Plasma Phys. Controlled Fusion
47
,
B303
(
2005
).
3.
H. B.
Garett
,
Rev. Geophys.
19
,
577
, (
1981
).
4.
D.
Bohm
, in
The Characteristics of Electrical Discharges in Magnetic Fields
, edited by
A.
Guthrie
and
R. K.
Wakerling
(
McGraw-Hill
,
New York
,
1949
), p.
77
.
5.
K. U.
Riemann
,
J. Phys. D: Appl. Phys.
24
,
493
(
1991
).
6.
D. D.
Tskhakaya
,
B.
Eliasson
,
P. K.
Shukla
, and
S.
Kuhn
,
Phys. Plasma
11
,
3945
(
2004
).
7.
K.-B.
Persson
,
Phys. Fluids
5
,
1625
(
1962
).
8.
R.
Chodura
,
Phys. Fluids
25
,
1628
(
1982
).
9.
P.
Stangeby
,
Phys. Plasmas
2
,
702
(
1995
).
10.
E.
Ahedo
,
Phys. Plasma
4
,
4419
(
1997
).
11.
K. U.
Riemann
,
Phys. Plasma
1
,
552
(
1994
).
12.
S.
Devaux
and
G.
Manfredi
,
Phys. Plasma
13
,
083504
(
2006
).
13.
D. D.
Tskhakaya
and
L.
Kos
,
Phys. Plasma
21
,
102115
(
2014
).
14.
P.
Stangeby
,
C.
Pitcher
, and
J.
Elder
,
Nucl. Fusion
32
,
2079
(
1992
).
15.
16.
D.
Coulette
and
G.
Manfredi
,
Plasma Phys. Controlled Fusion
58
,
025008
(
2016
).
17.
D. D.
Tskhakaya
,
P. K.
Shukla
,
B.
Eliasson
, and
S.
Kuhn
,
Phys. Plasma
12
,
103503
(
2005
).
18.
N. S.
Krasheninnikova
,
X.
Tang
, and
V. S.
Roytershteyn
,
Phys. Plasma
17
,
057103
(
2010
).
19.
K.
Theilhaber
and
C. K.
Birdsall
,
Phys. Fluids B
1
,
2244
(
1989
).
20.
K.
Theilhaber
and
C. K.
Birdsall
,
Phys. Fluids B
1
,
2260
(
1989
).
21.
M. J.
Gerver
,
S. E.
Parker
, and
K.
Theilhaber
,
Phys. Fluids B
2
,
1069
(
1990
).
22.
D. L.
Holland
,
B. D.
Fried
, and
G. J.
Morales
,
Phys. Fluids B
5
,
1723
(
1993
).
23.
U.
Daybelge
and
B.
Bein
,
Phys. Fluids
24
,
1190
(
1981
).
24.
J.
Moritz
,
E.
Faudot
,
S.
Devaux
, and
S.
Heuraux
,
Phys. Plasmas
23
,
062509
(
2016
).
25.
J.
Moritz
,
E.
Faudot
,
S.
Devaux
, and
S.
Heuraux
,
Phys. Plasmas
25
,
013534
(
2018
).
26.
M.
Lieberman
and
A.
Lichtenberg
,
Principles of Plasma Discharges and Material Processing
(
Wiley-Interscience
,
2005
), p.
8
.
27.
F.
Taccogna
,
R.
Schneider
,
K.
Matyash
,
S.
Longo
,
M.
Capitelli
, and
D.
Tskhakaya
,
J. Nucl. Mater.
363
,
437
(
2007
).
28.
R.
Bisswell
,
P.
Johnson
, and
P.
Stangeby
,
Phys. Fluid B
1
,
1133
(
1989
).
29.
P. C.
Stangeby
,
The Plasma Boundary of Magnetic Fusion Devices
(
Institute of Physics Publishing
,
London
,
2000
), p.
413
.
30.
D.
Tskhakaya
and
S.
Kuhn
,
J. Nucl. Mater.
313
,
1119
(
2003
).
31.
P.
Chabert
and
N.
Braithwaite
,
Physics of Radio-frequency Plasmas
(
Cambridge University Press
,
2011
), p.
86
.
32.
W.
Schottky
,
Phys. Z.
25
,
635
(
1924
).
33.
E.
Faudot
,
S.
Devaux
,
J.
Moritz
,
S.
Heuraux
,
P. M.
Cabrera
, and
F.
Brochard
,
Rev. Sci. Instrum.
86
,
063502
(
2015
).
34.
J.
Bak
,
R.
Pitts
,
H.
Kim
,
H.
Lee
,
C.
Bin
,
J.
Juhn
,
S.
Hong
,
O.
Garcia
,
R.
Kube
, and
D. C.
Seo
,
Nucl. Mater. Energy
12
,
1270
(
2017
).
You do not currently have access to this content.