In Hall thrusters, ions are extracted from a quasineutral plasma by the electric field induced by the local drop of electron conductivity associated with the presence of a magnetic barrier. Since the electric field is used both to extract and accelerate ions and to generate the plasma, thrust and specific impulse are not independent in a Hall thruster. There is a need for versatile thrusters that can be used for a variety of maneuvers, i.e., that can operate either at high thrust or at high specific impulse for a given power. The double stage Hall thruster (DSHT) design could allow a separate control of ionization and acceleration, and hence separate control of thrust and specific impulse. In the DSHT configuration, a supplementary plasma source (ionization stage), independent of the applied voltage, is added and placed upstream of the magnetic barrier (acceleration stage). The DSHT concept is also well adapted to the use of alternative propellants, lighter and with a less efficient ionization than xenon. Several designs of double stage Hall thrusters have been proposed in the past, but these attempts were not really successful. In this paper, we present a brief review of the main DSHT designs described in the literature, we discuss the relevance of the DSHT concept, and, on the basis of simple physics arguments and simulation results, we propose a new design, called ID-HALL (Inductive Double stage HALL thruster). In this design, the ionization stage is a magnetized inductively coupled RF plasma. The inductive coil is inside the central cylinder of the thruster and located nearby the acceleration stage. Preliminary modeling results of this DSHT are described.

1.
D. M.
Goebel
and
I.
Katz
,
Fundamentals of Electric Propulsion: Ion and Hall Thrusters
(
Wiley
,
2008
).
2.
J.-P.
Boeuf
,
J. Appl. Phys.
121
,
011101
(
2017
).
3.
L.
Dubois
,
F.
Gaboriau
,
L.
Liard
,
C.
Boniface
, and
J. P.
Boeuf
,
Phys. Plasmas
25
,
093504
(
2018
).
4.
Y.
Peterson
, Ph.D. thesis, Michigan State University,
2004
.
5.
A. I.
Morozov
,
A. I.
Bugrova
,
A. V.
Desyatskov
,
V. K.
Kharchenikov
,
M.
Prioul
, and
L.
Jolivet
, in
28th International Electric Propulsion Conference
, IEPC-2003-290, Toulouse, France (
2003
).
6.
A. I.
Bugrova
,
A. V.
Desiatskov
,
V. K.
Kharchenikov
,
A. I.
Morozov
, and
M.
Prioul
, in
29th International Electric Propulsion Conference
, IEPC 2005-146, Princeton, NJ (
2005
).
7.
A. I.
Morozov
and
V. V.
Savelyev
,
Phys. Usp.
41
,
1049
(
1998
).
8.
C.
Boniface
,
G.
Hagelaar
,
L.
Garrigues
,
J. P.
Boeuf
, and
M.
Prioul
,
IEEE Trans. Plasma Sci.
33
,
522
(
2005
).
9.
E.
Chesta
,
D.
Estublier
,
B.
Fallis
,
E.
Gengembre
,
J.
Gonzalez del Amo
,
N.
Kutufa
,
D.
Nicolini
,
G.
Saccoccia
,
L.
Casalino
,
P.
Dumazert
,
M.
Prioul
,
J. P.
Boeuf
,
A.
Bouchoule
,
N.
Wallace
,
G.
Noci
,
M.
Berti
,
M.
Saverdi
,
L.
Biagioni
,
S.
Marcuccio
,
A.
Cadiou
,
F.
Darnon
, and
L.
Jolivet
,
Acta Astronaut.
59
,
931
(
2006
).
10.
L.
Garrigues
,
C.
Boniface
,
G. J. M.
Hagelaar
, and
J. P.
Boeuf
,
Phys. Plasmas
15
,
113502
(
2008
).
11.
A. I.
Bugrova
,
A. V.
Desyatskov
,
V. K.
Kharchenikov
, and
A. S.
Lipatov
, in
30th International Propulsion Conference
, IEPC-2007-221, Florence,
Italy
(
2007
).
12.
D.
Yu
,
M.
Song
,
H.
Li
,
H.
Liu
, and
K.
Han
,
Phys. Plasmas
19
,
113505
(
2012
).
13.
D.
Yu
,
M.
Song
,
H.
Liu
,
X.
Zhang
, and
H.
Li
,
Phys. Plasmas
19
,
073511
(
2012
).
14.
P.
Molina-Morales
,
H.
Kuninaka
,
K.
Toki
, and
Y.
Arakawa
, in
27th International Electric Propulsion Conference
, IEPC-01-069,
Pasadena, California
,
USA
(
2001
).
15.
R. A.
Martinez
,
W. A.
Hoskins
,
P. Y.
Peterson
, and
D. R.
Massey
, in
31st International Electric Propulsion Conference (IEPC)
, Ann Harbor, Mi (
2009
).
16.
Y.
Peterson
,
D. R.
Massey
,
A.
Shabshelowitts
,
R.
Shastry
, and
R.
Liang
, in
32nd International Electric Propulsion Conference
, IEPC-2011-269, Kurhaus, Wiesbaden, Germany (
2011
).
17.
A.
Shabshelowits
and
A. D.
Gallimore
,
AIAA
Paper 2012-4336,
2012
.
18.
S.
Harada
,
T.
Baba
,
A.
Uchigashima
,
S.
Yokota
,
A.
Iwakawa
,
A.
Sasoh
,
T.
Yamazaki
, and
H.
Shimizu
,
Appl. Phys. Lett.
105
,
194101
(
2014
).
19.
H.
Kuwano
,
A.
Ohno
,
H.
Kuninaka
, and
H.
Nakashima
, in
30th International Electric Propulsion Conference
, IEPC-2007-085, Florence, Italy (
2007
).
20.
A. I.
Bugrova
,
G. E.
Bugrov
,
V. K.
Kharchenikov
,
M. I.
Shaposhnikov
, and
S.
Mazouffre
,
Tech. Phys. Lett.
38
,
344
(
2012
).
21.
M.
Cappaci
,
G.
Matticari
,
G. E.
Noci
,
P.
Siciliano
,
M.
Berti
,
L.
Biagoni
,
U.
Cesari
,
E.
Gengembre
, and
E.
Chesta
, AIAA Paper 2004-3771,
2004
.
22.
J.
Perez-Luna
,
G. J. M.
Hagelaar
,
L.
Garrigues
, and
J. P.
Boeuf
,
Phys. Plasmas
14
,
113502
(
2007
).
23.
H.
Kuwano
,
H.
Nakashima
, and
H.
Kuninaka
, in
Proceedings of the 24th International Symposium on Space Technology and Science
, ISTS 2004, Miyazaki, Japan (
2004
)
24.
V.
Godyak
,
J. Phys. D: Appl. Phys.
46
,
283001
(
2013
).
25.
J.
Arancibia Monreal
,
P.
Chabert
, and
V.
Godyak
,
Phys. Plasmas
20
,
103504
(
2013
).
26.
I. G.
Mikellides
,
I.
Katz
,
R. R.
Hofer
, and
D. M.
Goebel
,
J. Appl. Phys.
115
,
043303
(
2014
).
27.
R. R.
Hofer
,
D. M.
Goebel
,
I. G.
Mikellides
, and
I.
Katz
,
J. Appl. Phys.
115
,
043304
(
2014
).
28.
See https://www.hallis-model.com for HALLIS software
29.
G. J. M.
Hagelaar
,
J.
Bareilles
,
L.
Garrigues
, and
J. P.
Boeuf
,
J. Appl. Phys.
91
,
5592
(
2002
).
30.
J.
Bareilles
,
G. J. M.
Hagelaar
,
L.
Garrigues
,
C.
Boniface
,
J. P.
Boeuf
, and
N.
Gascon
,
Phys. Plasmas
11
,
3035
(
2004
).
31.
J.
Boeuf
and
L.
Garrigues
,
J. Appl. Phys.
84
,
3541
(
1998
).
32.
G. J. M.
Hagelaar
,
J.
Bareilles
,
L.
Garrigues
, and
J. P.
Boeuf
,
J. Appl. Phys.
93
,
67
(
2003
).
33.
J. C.
Adam
,
J. P.
Boeuf
,
N.
Dubuit
,
M.
Dudeck
,
L.
Garrigues
,
D.
Gresillon
,
A.
Heron
,
G. J. M.
Hagelaar
,
V.
Kulaev
,
N.
Lemoine
,
S.
Mazouffre
,
J.
Perez Luna
,
V.
Pisarev
, and
S.
Tsikata
,
Plasma Phys. Controlled Fusion
50
,
124041
(
2008
).
You do not currently have access to this content.