A gliding arc discharge (GAD) plasma is generated inside a vacuum chamber with Ar, O2, and air at pressure 100–600 Torr driven by a 1kHz,36kV power supply. The properties of the GAD plasma are investigated by electrical and optical emission spectroscopy methods. The power dissipation, relative intensity, jet length, rotational (Tr) and excitational (Tex) temperatures, and electron density (ne) are studied as a function of applied voltage, pressure, and feeding gas. It is found from the electrical characteristics that the power dissipation shows decreasing trends with increasing pressure but increasing with increasing voltage. The relative population densities of the reactive species N2(CB), O, and OH radicals produced as functions of pressure and applied voltage are investigated. It is found that the relative population densities of the species, especially N2(CB) and O, are increased with applied voltage and pressure, while OH(A-X) is decreased. The spectroscopic diagnostics reveals that Tr550850K, Tex820010 800K, and ne2.655.3×1014cm3 under different experimental conditions. Tr and ne are increased with increasing pressure, while Tex is decreased.

1.
A.
Fridman
,
S.
Nester
,
L. A.
Kennedy
,
A.
Saveliev
, and
O.
Mutaf-Yardimc
,
Prog. Energy Combust. Sci.
25
,
211
(
1999
).
2.
Y.
Kusano
,
B. F.
Sorensen
,
T. L.
Andersen
,
H. L.
Toftegaard
,
F.
Leipold
,
M.
Salewski
,
Z.
Sun
,
J.
Zhu
,
Z.
Li
, and
M.
Alden
,
J. Phys. D: Appl. Phys.
46
,
135203
(
2013
).
3.
Y.
Yang
,
I. Y.
Cho
, and
A.
Fridman
,
Plasma Discharge in Liquid
(
CRC Press, Taylor and Francis
,
New York
,
2012
).
4.
C.
Du
,
J.
Tang
,
J.
Mo
,
D.
Ma
,
J.
Wang
,
K.
Wang
, and
Y.
Zeng
,
IEEE Trans. Plasma Sci.
42
(
9
),
2221
2228
(
2014
).
5.
C. M.
Du
,
J.
Wang
,
L.
Zhang
,
H. X.
Li
,
H.
Liu
, and
Y.
Xiong
,
New J. Phys.
14
,
13010
(
2012
).
6.
J.
Gao
,
J.
Zhu
,
A.
Ehn
,
M.
Aldén
, and
Z.
Li
,
Plasma Chem. Plasma Process.
37
(
2
),
433
(
2017
).
7.
N. C.
Young
,
Y. C.
Yang
, and
K.
Yoshikawa
,
Catal. Today
148
,
283
(
2009
).
8.
Z. B.
Feng
,
N.
Saeki
,
T.
Kuroki
,
M.
Tahara
, and
M.
Okubo
,
Appl. Phys. Lett.
101
(
4
),
041602
(
2012
).
9.
C.
Kong
,
J.
Gao
,
J.
Zhu
,
A.
Ehn
,
M.
Alden
, and
Z.
Li
,
Phys. Plasmas
24
,
093515
(
2017
).
10.
S. Y.
Lu
,
X. M.
Sun
,
X. D.
Li
,
J. H.
Yan
, and
C. M.
Du
,
Phys. Plasmas
19
,
072122
(
2012
).
11.
J.
Zhu
,
A.
Ehn
,
J.
Gao
,
C.
Kong
,
M.
Alden
,
M.
Salewski
,
F.
Leipold
,
Y.
Kusano
, and
Z.
Li
,
Opt. Express
25
,
20243
(
2017
).
12.
F. S.
Zhu
,
H.
Zhang
,
X. D.
Li
,
A. J.
Wu
,
J. H.
Yan
,
M. J.
Ni
, and
X.
Tu
,
J. Phys. D: Appl. Phys.
51
,
105202
(
2018
).
13.
B.
Benstaali
,
P.
Boubert
,
B. G.
Cheron
,
A.
Addou
, and
J. L.
Brisset
,
Plasma Chem. Plasma Process.
22
(
4
),
553
571
(
2002
).
14.
T. L.
Zhao
,
Y.
Xu
,
Y. H.
Song
,
X. S.
Li
,
J. L.
Liu
,
J. B.
Liu
, and
A. M.
Zhu
,
J. Phys. D: Appl. Phys.
46
,
345201
(
2013
).
15.
S.
Kolev
and
A.
Bogaerts
,
Plasma Sources Sci. Technol.
24
,
015025
(
2015
).
16.
A.
Fridman
,
A.
Gutsol
,
S.
Gangoli
,
Y.
Ju
, and
T.
Ombrello
,
J. Propul. Power
24
,
1216
(
2008
).
17.
S. R.
Sun
,
S.
Kolev
,
H. X.
Wang
, and
A.
Bogaerts
,
Plasma Sources Sci. Technol.
26
,
055017
(
2017
).
18.
Y. D.
Korolev
,
O. B.
Frants
,
N. V.
Landl
,
A. V.
Bolotov
, and
V. O.
Nekhoroshev
,
Plasma Sources Sci. Technol.
23
,
054016
(
2014
).
19.
J.
Zhu
,
J.
Gao
,
A.
Ehn
,
M.
Aldén
,
A.
Larsson
,
Y.
Kusano
, and
Z.
Li
,
Phys. Plasmas
24
,
013514
(
2017
).
20.
M. R.
Talukder
,
D.
Korzec
, and
M.
Kando
,
J. Appl. Phys.
91
(
12
),
9529
9538
(
2002
).
21.
N. C.
Roy
,
M. G.
Hafez
, and
M. R.
Talukder
,
Phys. Plasmas
23
,
083502
(
2016
).
22.
N. C.
Roy
,
M. R.
Talukder
, and
A. N.
Chowdhury
,
Plasma Sci. Technol.
19
,
125402
(
2017
).
23.
J.
Zhu
,
Z.
Sun
,
Z.
Li
,
A.
Ehn
,
M.
Aldén
,
M.
Salewski
,
F.
Leipold
, and
Y.
Kusano
,
J. Phys. D: Appl. Phys.
47
,
295203
(
2014
).
24.
D. B.
Grave
,
Phys. Plasmas
21
,
080901
(
2014
).
25.
F. U.
Khan
,
N. U. R. S.
Naseer
,
M. Y.
Naz
,
N. A. D.
Khattak
, and
M.
Zakaullah
,
Spectrosc. Lett.
44
(
3
),
194
202
(
2011
).
26.
B.
Jiang
,
J.
Zheng
,
S.
Qiu
,
M.
Wu
,
Q.
Zhang
,
Z.
Yan
, and
Q.
Xue
,
Chem. Eng. J.
236
,
348
368
(
2014
).
27.
K.
Ninomiya
,
T.
Ishijima
,
M.
Imamura
,
T.
Yamahara
,
H.
Enomoto
,
K.
Takahashi
,
Y.
Tanaka
,
Y.
Uesugi
, and
N.
Shimizu
,
J. Phys. D: Appl. Phys.
46
,
425401
(
2013
).
28.
M. S. I.
Khan
,
E. J.
Lee
, and
Y. J.
Kim
,
AIP Adv.
5
,
107111
(
2015
).
29.
Y.
Yue
,
X.
Pei
, and
X.
Lu
,
J. Appl. Phys.
119
,
033301
(
2016
).
30.
Q.
Xiong
,
X.
Lu
,
K.
Ostrikov
,
Y.
Xian
,
C.
Zou
,
Z.
Xiong
, and
Y.
Pan
,
Phys. Plasmas
17
,
043506
(
2010
).
31.
B.
Ghimire
,
J.
Sornsakdanuphap
,
Y. J.
Hong
,
H. S.
Uhm
,
K.-D.
Weltmann
, and
E. H.
Choi
,
Phys. Plasmas
24
,
073502
(
2017
).
32.
K.
Takaki
,
D.
Kitamura
, and
T.
Fujiwara
,
J. Phys. D: Appl. Phys.
33
,
1369
(
2000
).
33.
R. P.
Raizer
,
Gas Discharge Physics
(
Spinger-Verlag
,
Berlin, Heildelberg, Germany
,
1991
).
34.
C. C.
Hsu
and
C. Y.
Wu
,
J. Phys. D: Appl. Phys.
42
,
215202
(
2009
).
35.
A.
El-Zein
,
M.
Tallat
,
G.
El-Aragi
, and
A.
El-Amawy
,
IEEE Trans. Plasma Sci.
44
(
7
),
1155
1159
(
2016
).
36.
P.
Attri
,
F.
Tochikubo
,
J. H.
Park
,
E. H.
Choi
,
K.
Koga
, and
M.
Shiratan
,
Sci. Rep.
8
,
2926
(
2018
).
37.
Z. W.
Sun
,
J. J.
Zhu
,
Z. S.
Li
,
M.
Aldén
,
F.
Leipold
,
M.
Salewski
, and
Y.
Kusano
,
Opt. Express
21
,
6028
(
2013
).
38.
P. J.
Bruggeman
,
N.
Sadeghi
,
D. C.
Schram
, and
V.
Linss
,
Plasma Sources Sci. Technol.
23
,
023001
(
2014
).
39.
U.
Fantz
,
Plasma Sources Sci. Technol.
15
,
S137
(
2006
).
40.
I.
Biganzoli
,
R.
Barni
,
C.
Riccardi
,
A.
Gurioli
, and
R.
Pertile
,
Plasma Sources Sci. Technol.
22
,
025009
(
2013
).
41.
P.
Bruggeman
,
D.
Schram
,
M. A.
Gonzalez
,
R.
Rego
,
M. G.
Kong
, and
C.
Leys
,
Plasma Sources Sci. Technol.
18
,
025017
(
2009
).
42.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
John Wiley and Sons, Inc
.,
New York
,
1994
).
43.
S.
Wu
,
Z.
Wang
,
Q.
Huang
,
X.
Tan
,
X.
Lu
, and
K.
Ostrikov
,
Phys. Plasmas
20
,
023503
(
2013
).
44.
D. J.
Emmons
,
D. E.
Weeks
,
B.
Eshel
, and
G. P.
Perram
,
J. Appl. Phys.
123
,
043304
(
2018
).
45.
D.
Xiao
,
C.
Cheng
,
J.
Shen
,
Y.
Lan
,
H.
Xie
,
X.
Shu
,
Y.
Meng
,
J.
Li
, and
P. K.
Chu
,
J. Appl. Phys.
115
,
033303
(
2014
).
46.
G. D.
Izarra
and
J. M.
Cormier
,
J. Phys. D: Appl. Phys.
46
,
105503
(
2013
).
47.
See http://www.sri.com/cem/lifbase for LIEBASE (version 1.9).
48.
J.
Raud
,
M.
Laan
, and
I.
Jogi
,
J. Phys. D: Appl. Phys.
44
,
345201
(
2011
).
49.
X. L.
Deng
,
A. Y.
Nikiforov
,
P.
Vanraes
, and
C.
Leys
,
J. Appl. Phys.
113
,
023305
(
2013
).
50.
K. C.
Hsieh
,
H.
Wang
, and
B. R.
Locke
,
Plasma Process. Polym.
13
,
908
(
2016
).
51.
L.-L.
Zhao
,
Y.
Liu
, and
T.
Samir
,
Chin. Phys. B
26
(
12
),
125201
(
2017
).
52.
M.
Younus
,
N. U.
Rehman
,
M.
Shafiq
,
M.
Naeem
, and
M.
Zaka-ul-Islam
,
Plasma Sci. Technol.
19
,
025402
(
2017
).
53.
H.-J.
Kunz
,
Introduction to Plasma Spectroscopy
(
Springer
,
Heidelberg, Dordrecht, London, New York
,
2009
).
54.
See www.physics.nist.gov/PhysRefData/ASD/lines_form.html for
National Institute of Standards and Technology (NIST)
.
55.
M. H.
Joh
,
J. Y.
Choi
,
S. J.
Kim
, and
T. H.
Kang
,
Sci. Rep.
4
,
6638
(
2014
).
You do not currently have access to this content.