We present a linear mode analysis of the relativistic magnetohydrodynamics equations in the presence of finite electrical conductivity. Starting from the fully relativistic covariant formulation, we derive the dispersion relation in the limit of small linear perturbations. It is found that the system supports ten wave modes which can be easily identified in the limits of small or large conductivities. In the resistive limit, matter and electromagnetic fields decouple and solution modes approach pairs of light and acoustic waves as well as a number of purely damped (non-propagating) modes. In the opposite (ideal) limit, the frozen-in condition applies and the modes of propagation coincide with a pair of fast magnetosonic, a pair of slow and Alfvén modes, as expected. In addition, the contact mode is always present and it is unaffected by the conductivity. For finite values of the conductivity, the dispersion relation gives rise to either pairs of opposite complex conjugate roots or purely imaginary (damped) modes. In all cases, the system is dissipative and also dispersive as the phase velocity depends nonlinearly on the wavenumber. Occasionally, the group velocity may exceed the speed of light although this does not lead to superluminal signal propagation.

1.
A.
Lichnerowicz
,
Relativistic Hydrodynamics and Magnetohydrodynamics
(
Benjamin
,
New York
,
1967
).
2.
A. M.
Anile
, in
Relativistic Fluids and Magneto-Fluids
, edited by
A. M.
Anile
(
Cambridge University Press
,
Cambridge, UK
,
2005
).
4.
L.
Del Zanna
,
N.
Bucciantini
, and
P.
Londrillo
,
Astron. Astrophys.
400
,
397
(
2003
).
6.
C. F.
Gammie
,
J. C.
McKinney
, and
G.
Tóth
,
ApJ
589
,
444
(
2003
).
7.
A.
Mignone
and
G.
Bodo
,
MNRAS
368
,
1040
(
2006
).
8.
B.
Giacomazzo
and
L.
Rezzolla
,
J. Fluid Mech.
562
,
223
(
2006
).
10.
C.
Palenzuela
,
L.
Lehner
,
O.
Reula
, and
L.
Rezzolla
,
MNRAS
394
,
1727
(
2009
); e-print arXiv:0810.1838.
11.
B.
van der Holst
,
R.
Keppens
, and
Z.
Meliani
,
Comput. Phys. Commun.
179
,
617
(
2008
); e-print arXiv:0807.0713.
12.
A.
Mignone
,
M.
Ugliano
, and
G.
Bodo
,
MNRAS
393
,
1141
(
2009
); e-print arXiv:0811.1483.
13.
R.
Keppens
and
Z.
Meliani
,
Phys. Plasmas
15
,
102103
(
2008
); e-print arXiv:0810.2416.
14.
S.
Koide
,
Phys. Rev. D
78
,
125026
(
2008
); e-print arXiv:0810.1324 [physics.plasm-ph].
15.
M.
Takamoto
and
T.
Inoue
,
ApJ
735
,
113
(
2011
); e-print arXiv:1105.5683 [astro-ph.HE].
16.
L.
Del Zanna
,
E.
Papini
,
S.
Landi
,
M.
Bugli
, and
N.
Bucciantini
,
MNRAS
460
,
3753
(
2016
); e-print arXiv:1605.06331 [astro-ph.HE].
17.
T.-P.
Liu
,
Commun. Math. Phys.
108
,
153
(
1987
).
18.
J. A.
Hittinger
, “
Foundations for the generalization of the Godunov method to hyperbolic systems with stiff relaxation source terms
,” Ph.D. thesis (
University of Michigan
,
2000
).
19.
P. L.
Roe
and
J. A. F.
Hittinger
, “
Toward Godunov-type methods for hyperbolic conservation laws with stiff relaxation
,” in
Godunov Methods: Theory and Applications
, edited by
E. F.
Toro
(
Springer US
,
Boston, MA
,
2001
), pp.
725
744
.
20.
E.
Durand
,
Solutions Numériques des Équations Algébriques
(
Masson
,
Paris
,
1971
).
21.
L.
Muschietti
and
C. T.
Dum
,
Phys. Fluids B
5
,
1383
(
1993
).
22.
J. A.
Stratton
,
Electromagnetic Theory
, International Series in Pure and Applied Physics (
McGraw-Hill
,
New York, NY
,
1941
).
23.
Wave Propagation and Group Velocity
, Pure and Applied Physics, Vol.
8
, edited by
L.
Brillouin
(
Elsevier
,
1960
), pp.
1
16
.
24.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed., edited by
J. D.
Jackson
(
Wiley-VCH
,
1998
), p.
832
, ISBN 0-471-30932-X.
25.
A.
Sommerfeld
, in
Wave Propagation and Group Velocity
, Pure and Applied Physics, Vol.
8
, edited by
L.
Brillouin
(
Elsevier
,
1960
), pp.
17
42
.
26.
R.
Viher
,
KoG
11
,
25
(
2007
).
You do not currently have access to this content.