Machine learning is finding increasingly broad applications in the physical sciences. This most often involves building a model relationship between a dependent, measurable output, and an associated set of controllable, but complicated, independent inputs. We present a tutorial on current techniques in machine learning—a jumping-off point for interested researchers to advance their work. We focus on deep neural networks with an emphasis on demystifying deep learning. We begin with background ideas in machine learning and some example applications from current research in plasma physics. We discuss supervised learning techniques for modeling complicated functions, beginning with familiar regression schemes, and then advancing to more sophisticated deep learning methods. We also address unsupervised learning and techniques for reducing the dimensionality of input spaces. Along the way, we describe methods for practitioners to help ensure that their models generalize from their training data to as-yet-unseen test data. We describe classes of tasks—predicting scalars, handling images, and fitting time-series—and prepare the reader to choose an appropriate technique. We finally point out some limitations to modern machine learning and speculate on some ways that practitioners from the physical sciences may be particularly suited to help.

1.
P.
Baldi
,
P.
Sadowski
, and
D.
Whiteson
, “
Searching for exotic particles in high-energy physics with deep learning
,”
Nat. Commun.
5
,
4308
(
2014
).
2.
B.
Cannas
,
A.
Fanni
,
P.
Sonato
,
M. K.
Zedda
, and
JET-EFDA Contributors
, “
A prediction tool for real-time application in the disruption protection system at jet
,”
Nucl. Fusion
47
(
11
),
1559
(
2007
).
3.
T.
Ching
,
D. S.
Himmelstein
,
B. K.
Beaulieu-Jones
,
A. A.
Kalinin
,
B. T.
Do
,
G. P.
Way
,
E.
Ferrero
,
P.-M.
Agapow
,
M.
Zietz
,
M. M.
Hoffman
,
W.
Xie
,
G. L.
Rosen
,
B. J.
Lengerich
,
J.
Israeli
,
J.
Lanchantin
,
S.
Woloszynek
,
A. E.
Carpenter
,
A.
Shrikumar
,
J.
Xu
,
E. M.
Cofer
,
C. A.
Lavender
,
S. C.
Turaga
,
A. M.
Alexandari
,
Z.
Lu
,
D. J.
Harris
,
D.
DeCaprio
,
Y.
Qi
,
A.
Kundaje
,
Y.
Peng
,
L. K.
Wiley
,
M. H. S.
Segler
,
S. M.
Boca
,
S.
Joshua Swamidass
,
A.
Huang
,
A.
Gitter
, and
C. S.
Greene
, “
Opportunities and obstacles for deep learning in biology and medicine
,”
J. R. Soc. Interface
15
,
20170387
(
2018
).
4.
Y.-N. A.
Chuang
, https://www.npr.org/sections/alltechconsidered/2017/10/05/555032943/lawmakers-dont-gauge-artificial-intelligence-by-what-you-see-in-the-movies for Lawmakers: Don’t gauge artificial intelligence by what you see in the movies; accessed 13 December 2017.
5.
O.
Ciricosta
,
H.
Scott
,
P.
Durey
,
B. A.
Hammel
,
R.
Epstein
,
T. R.
Preston
,
S. P.
Regan
,
S. M.
Vinko
,
N. C.
Woolsey
, and
J. S.
Wark
, “
Simultaneous diagnosis of radial profiles and mix in NIF ignition-scale implosions via x-ray spectroscopy
,”
Phys. Plasmas
24
(
11
),
112703
(
2017
).
6.
G.
Cybenko
, “
Approximation by superpositions of a sigmoidal function
,”
Math. Control, Signals Syst.
2
(
4
),
303
314
(
1989
).
7.
J.
Deng
,
W.
Dong
,
R.
Socher
,
L.-J.
Li
,
K.
Li
, and
L.
Fei-Fei
, “
ImageNet: A large-scale hierarchical image database
,” in
2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR09
(
2009
).
8.
J.
Duchi
,
E.
Hazan
, and
Y.
Singer
, “
Adaptive subgradient methods for online learning and stochastic optimization
,”
J. Mach. Learn. Res.
12
,
2121
2159
(
2011
).
9.
I.
Goodfellow
,
Y.
Bengio
, and
A.
Courville
,
Deep Learning
(
MIT Press
,
2016
).
10.
K.
Hornik
,
M.
Stinchcombe
, and
H.
White
, “
Multilayer feedforward networks are universal approximators
,”
Neural Networks
2
(
5
),
359
366
(
1989
).
11.
M.
Huertas-Company
,
J. R.
Primack
,
A.
Dekel
,
D. C.
Koo
,
S.
Lapiner
,
D.
Ceverino
,
R. C.
Simons
,
G. F.
Snyder
,
M.
Bernardi
,
Z.
Chen
,
H.
Domínguez-Sánchez
,
C. T.
Lee
,
B.
Margalef-Bentabol
, and
D.
Tuccillo
, “
Deep learning identifies high-z galaxies in a central blue nugget phase in a characteristic mass range
,”
Astrophys. J.
858
(
2
),
114
(
2018
).
12.
K. D.
Humbird
, private communication (
2017
).
13.
K. D.
Humbird
,
J. L.
Peterson
, and
R. G.
McClarren
, “
Deep jointly-informed neural networks
,” preprint arXiv:1707.00784 (
2017
).
14.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” preprint arXiv:1412.6980 (
2014
).
15.
W.
Knight
, https://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/ for The dark secret at the heart of AI; accessed 15 December
2017
.
16.
C.
Lam
and
D.
Kipping
, “
A machine learns to predict the stability of circumbinary planets
,”
Mon. Not. R. Astron. Soc.
476
(
4
),
5692
5697
(
2018
).
17.
H.
Lee
,
R.
Grosse
,
R.
Ranganath
, and
A. Y.
Ng
, “
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
,” in
Proceedings of the 26th Annual International Conference on Machine Learning
, ICML ’09,
New York, NY, USA
(ACM,
2009
), pp.
609
616.
18.
T. M.
Mitchell
,
Machine Learning
(
McGraw-Hill
,
New York
,
1997
).
19.
T.
Nathan Mundhenk
,
L. M.
Kegelmeyer
, and
S. K.
Trummer
, “
Deep learning for evaluating difficult-to-detect incomplete repairs of high fluence laser optics at the National Ignition Facility
,”
Proc. SPIE
10338
,
103380H
(
2017
).
20.
R.
Nora
,
J. L.
Peterson
,
B. K.
Spears
,
J. E.
Field
, and
S.
Brandon
, “
Ensemble simulations of inertial confinement fusion implosions
,”
Stat. Anal. Data Min.
10
(
4
),
230
237
(
2017
).
21.
C.
Olah
, http://colah.github.io/posts/2015-08-Understanding-LSTMs/ for Understanding LSTM networks; accessed 17 December
2017
.
22.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
, “
Scikit-learn: Machine learning in python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
23.
J. L.
Peterson
,
K. D.
Humbird
,
J. E.
Field
,
S. T.
Brandon
,
S. H.
Langer
,
R. C.
Nora
,
B. K.
Spears
, and
P. T.
Springer
, “
Zonal flow generation in inertial confinement fusion implosions
,”
Phys. Plasmas
24
(
3
),
032702
(
2017
).
24.
C.
Rea
and
R. S.
Granetz
, “
Exploratory machine learning studies for disruption prediction using large databases on DIII-D
,”
Fusion Sci. Technol.
74
(
1–2
),
89
100
(
2017
).
25.
B.
Tracey
,
K.
Duraisamy
, and
J. J.
Alonso
,
A Machine Learning Strategy to Assist Turbulence Model Development (
American Institute of Aeronautics and Astronautics, Inc
.,
AIAA
,
2015
).
26.
J.
Vega
,
S.
Dormido-Canto
,
J. M.
Lopez
,
A.
Murari
,
J. M.
Ramirez
,
R.
Moreno
,
M.
Ruiz
,
D.
Alves
, and
R.
Felton
, “
Results of the jet real-time disruption predictor in the ITER-like wall campaigns
,” in
Proceedings of the 27th Symposium On Fusion Technology (SOFT-27), Liege, Belgium, 24–28 September 2012
J.
Vega
,
S.
Dormido-Canto
,
J. M.
Lopez
,
A.
Murari
,
J. M.
Ramirez
,
R.
Moreno
,
M.
Ruiz
,
D.
Alves
, and
R.
Felton
, [
Fusion Eng. Des.
88
(
6
),
1228
1231
(
2013
)].
27.
S.
Webb
, “
Deep learning for biology
,”
Nature
554
,
555
557
(
2018
).
You do not currently have access to this content.