The dynamical characteristics of a single frequency low pressure capacitively coupled plasma (CCP) device under varying applied RF voltages and driving frequencies are studied using particle-in-cell/Monte Carlo collision simulations. An operational regime is identified where for a given voltage the plasma density is found to remain constant over a range of driving frequencies and to then increase rapidly as a function of the driving frequency. The threshold frequency for this mode transition as well as the value of the constant density is found to increase with an increase in the applied voltage. Over the constant density range, for a given voltage, the sheath width is seen to increase as a function of the increasing driving frequency, thereby changing the ion energy without affecting the ion density. Our parametric study thus indicates that the twin knobs of the applied voltage and driving frequency offer a means of independently controlling the density and the ion energy in a low pressure CCP device that may be usefully exploited for plasma processing applications.

1.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley
,
New York
,
2005
).
2.
P.
Chabert
and
N.
Braithwaite
,
Physics of Radio-Frequency Plasmas
(
Cambridge University Press
,
Cambridge
,
2011
).
3.
M. A.
Lieberman
,
IEEE Trans. Plasma Sci.
16
,
638
(
1988
).
4.
M. A.
Lieberman
and
V. A.
Godyak
,
IEEE Trans. Plasma Sci.
26
,
955
(
1998
).
5.
V. A.
Godyak
,
Sov. Phys.-Tech. Phys.
16
,
1073
(
1972
).
6.
O. A.
Popov
and
V. A.
Godyak
,
J. Appl. Phys.
57
,
53
(
1985
).
7.
I. D.
Kaganovich
,
Phys. Rev. Lett.
89
,
265006
(
2002
).
8.
9.
E.
Kawamura
,
M. A.
Lieberman
, and
A. J.
Lichtenberg
,
Phys. Plasmas
13
,
053506
(
2006
).
10.
S.
Sharma
, “
Investigation of ion and electron kinetic phenomena in capacitively coupled radio-frequency plasma sheaths: A simulation study
,” Ph.D. thesis (
Dublin City University
,
2013
).
11.
G.
Gozadinos
,
M. M.
Turner
, and
D.
Vender
,
Phys. Rev. Lett.
87
,
135004
(
2001
).
12.
S.
Sharma
and
M. M.
Turner
,
Plasma Sources Sci. Technol.
22
(
3
),
035014
(
2013
).
13.
S.
Sharma
,
S. K.
Mishra
, and
P. K.
Kaw
,
Phys. Plasmas
21
,
073511
(
2014
).
14.
I. D.
Kaganovich
,
O. V.
Polomarov
, and
C. E.
Theodosiou
,
IEEE Trans. Plasma Sci.
34
,
696
(
2006
).
15.
S.
Sharma
,
S. K.
Mishra
,
P. K.
Kaw
,
M. M.
Turner
, and
S. K.
Karkari
,
Contrib. Plasma Phys.
55
(
4
),
331
(
2015
).
16.
S.
Sharma
and
M. M.
Turner
,
Phys. Plasmas
20
,
073507
(
2013
).
17.
M.
Surendra
and
D. B.
Graves
,
IEEE Trans. Plasma Sci.
19
,
144
(
1991
).
18.
M. M.
Turner
,
J. Phys. D: Appl. Phys.
42
,
194008
(
2009
).
19.
H. H.
Goto
,
H. D.
Lowe
, and
T.
Ohmi
,
IEEE Trans. Semicond. Manuf.
6
,
58
(
1993
).
20.
A.
Perret
,
P.
Chabert
,
J.
Jolly
, and
J. P.
Booth
,
Appl. Phys. Lett.
86
,
021501
(
2005
).
21.
S.
Sharma
and
M. M.
Turner
,
J. Phys. D: Appl. Phys.
46
,
285203
(
2013
).
22.
P. C.
Boyle
,
A. R.
Ellingboe
, and
M. M.
Turner
,
J. Phys. D: Appl. Phys.
37
,
697
(
2004
).
23.
B. G.
Heil
,
J.
Schulze
,
T.
Mussenbrock
,
R. P.
Brinkmann
, and
U.
Czarnetzki
,
IEEE Trans. Plasma Sci.
36
,
1404
(
2008
).
24.
B. G.
Heil
,
U.
Czarnetzki
,
R. P.
Brinkmann
, and
T.
Mussenbrock
,
J. Phys. D: Appl. Phys.
41
,
165202
(
2008
).
25.
X. V.
Qin
,
Y. H.
Ting
, and
A. E.
Wendt
,
Plasma Sources Sci. Technol.
19
,
065014
(
2010
).
26.
H.
Shin
,
W.
Zhu
,
L.
Xu
,
V. M.
Donnelly
, and
D. J.
Economou
,
Plasma Sources Sci. Technol.
20
,
055001
(
2011
).
27.
D. J.
Economou
,
J. Vac. Sci. Technol., A
31
,
050823
(
2013
).
28.
T.
Lafleur
,
Plasma Sources Sci. Technol.
25
,
013001
(
2016
).
29.
S.
Sharma
,
S. K.
Mishra
,
P. K.
Kaw
,
A.
Das
,
N.
Sirse
, and
M. M.
Turner
,
Plasma Sources Sci. Technol.
24
,
025037
(
2015
).
30.
T.
Lafleur
,
P. A.
Delattre
,
E. V.
Johnson
, and
J. P.
Booth
,
Appl. Phys. Lett.
101
,
124104
(
2012
).
31.
A. A.
Howling
,
J. L.
Dorier
,
C.
Hollenstein
,
U.
Kroll
, and
F.
Finger
,
J. Vac. Sci. Technol., A
10
,
1080
(
1992
).
32.
M.
Surendra
and
D. B.
Graves
,
Appl. Phys. Lett.
59
,
2091
(
1991
).
33.
S.
Wilczek
,
J.
Trieschmann
,
J.
Schulze
 et al,
Plasma Sources Sci. Technol.
24
,
024002
(
2015
).
34.
S.
Sharma
,
N.
Sirse
,
P. K.
Kaw
,
M. M.
Turner
, and
A. R.
Ellingboe
,
Phys. Plasmas
23
,
110701
(
2016
).
35.
M. M.
Turner
,
Plasma Sources Sci. Technol.
22
,
055001
(
2013
).
36.
P. C.
Boyle
,
A. R.
Ellingboe
, and
M. M.
Turner
,
Plasma Sources Sci. Technol.
13
,
493
(
2004
).
37.
J.
Conway
,
S.
Kechkar
,
N.
O'Connor
,
C.
Gaman
,
M. M.
Turner
, and
S.
Daniels
,
Plasma Sources Sci. Technol.
22
,
045004
(
2013
).
38.
L.
Lauro-Taroni
,
M. M.
Turner
, and
N. St. J.
Braithwaite
,
J. Phys. D: Appl. Phys.
37
,
2216
(
2004
).
39.
M. M.
Turner
,
A. W.
Hutchinson
,
R. A.
Doyle
, and
M. B.
Hopkins
,
Phys. Rev. Lett.
76
,
2069
(
1996
).
40.
S.
Sharma
,
S. K.
Mishra
,
P. K.
Kaw
, and
M. M.
Turner
,
Phys. Plasmas
24
,
013509
(
2017
).
41.
M. M.
Turner
,
A.
Derzsi
,
Z.
Donkó
,
D.
Eremin
, and
S. J.
Kelly
,
Phys. Plasmas
20
,
013507
(
2013
).
42.
S.
Sharma
,
N.
Sirse
,
M. M.
Turner
, and
A. R.
Ellingboe
,
Phys. Plasmas
25
(
6
),
063501
(
2018
).
43.
C. K.
Birdsall
,
Plasma Physics via Computer Simulation
(
Adam Hilger
,
Bristol
,
1991
).
44.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
Adam Hilger
,
Bristol
,
1988
).
You do not currently have access to this content.