The classical positive Corona Discharge theory in a cylindrical axisymmetric configuration is revisited in order to find analytically the influence of gas properties and thermodynamic conditions on the corona current. The matched asymptotic expansion of Durbin and Turyn [J. Phys. D: Appl. Phys. 20, 1490–1495 (1987)] of a simplified but self-consistent problem is performed and explicit analytical solutions are derived. The mathematical derivation enables us to express a new positive DC corona current-voltage characteristic, choosing either a dimensionless or dimensional formulation. In dimensional variables, the current voltage law and the corona inception voltage explicitly depend on the electrode size and physical gas properties such as ionization and photoionization parameters. The analytical predictions are successfully confronted with experiments and Peek's and Townsend's laws. An analytical expression of the corona inception voltage φon is proposed, which depends on the known values of physical parameters without adjustable parameters. As a proof of consistency, the classical Townsend current-voltage law I=Cφ(φφon) is retrieved by linearizing the non-dimensional analytical solution. A brief parametric study showcases the interest in this analytical current model, especially for exploring small corona wires or considering various thermodynamic conditions.

1.
P.
Durbin
and
L.
Turyn
, “
Analysis of the positive DC corona between coaxial cylinders
,”
J. Phys. D: Appl. Phys.
20
,
1490
1495
(
1987
).
2.
R. G.
Stearns
, “
The positive corona in air: A simplified analytic approach
,”
J. Appl. Phys.
66
(
7
),
2899
2913
(
1989
).
3.
R. G.
Stearns
, “
Ion mobility measurements in a positive corona discharge
,”
J. Appl. Phys.
67
(
6
),
2789
2799
(
1990
).
4.
R. S.
Sigmond
, “
Simple approximate treatment of unipolar space-charge-dominated coronas: The Warburg law and the saturation current
,”
J. Appl. Phys.
53
(
2
),
891
898
(
1982
).
5.
J. E.
Jones
,
J.
Dupuy
,
G. O. S.
Schreiber
, and
R. T.
Waters
, “
Boundary conditions for the positive direct-current corona in a coaxial system
,”
J. Phys. D: Appl. Phys.
21
(
2
),
322
333
(
1988
).
6.
K.
Yanallah
,
F.
Pontiga
,
Y.
Meslem
, and
A.
Castellanos
, “
An analytical approach to wire-to-cylinder corona discharge
,”
J. Electrostat.
70
(
4
),
374
383
(
2012
).
7.
M. J.
Johnson
and
D. B.
Go
, “
Recent advances in electrohydrodynamic pumps operated by ionic winds: A review
,”
Plasma Sources Sci. Technol.
26
(
10
),
103002
(
2017
).
8.
N.
Monrolin
,
F.
Plouraboué
, and
O.
Praud
, “
Electrohydrodynamic thrust for in-atmosphere propulsion
,”
AIAA J.
55
(
12
),
4296
4305
(
2017
).
9.
F. W.
Peek
,
Dielectric Phenomena in High Voltage Engineering
(
McGraw-Hill Book Company Inc
.,
1915
), Chap. 3, pp.
38
78
.
10.
S. Z.
Li
and
H. S.
Uhm
, “
Investigation of electrical breakdown characteristics in the electrodes of cylindrical geometry
,”
Phys. Plasmas
11
(
6
),
3088
(
2004
).
11.
G. V.
Naidis
, “
Conditions for inception of positive corona discharges in air
,”
J. Phys. D: Appl. Phys.
38
(
13
),
2211
2214
(
2005
).
12.
Y.
Zheng
,
B.
Zhang
, and
J.
He
, “
Current-voltage characteristics of dc corona discharges in air between coaxial cylinders
,”
Phys. Plasmas
22
(
2
),
023501
(
2015
).
13.
J. J.
Lowke
and
F.
D'Alessandro
, “
Onset corona fields and electrical breakdown criteria
,”
J. Phys. D: Appl. Phys.
36
(
21
),
2673
2682
(
2003
).
14.
J. J.
Lowke
and
R.
Morrow
, “
Theory of electric corona including the role of plasma chemistry
,”
Pure Appl. Chem.
66
(
6
),
1287
1294
(
1994
).
15.
P.
Seimandi
,
G.
Dufour
, and
F.
Rogier
, “
An asymptotic model for steady wire-to-wire corona discharges
,”
Math. Comput. Modell.
50
(
3–4
),
574
583
(
2009
).
16.
P.
Seimandi
,
G.
Dufour
, and
F.
Rogier
, “
A two scale model of air corona discharges
,”
Procedia Comput. Sci.
1
(
1
),
627
635
(
2010
).
17.
H.
Shibata
,
Y.
Watanabe
, and
K.
Suzuki
, “
Performance prediction of electrohydrodynamic thrusters by the perturbation method
,”
Phys. Plasmas
23
(
5
),
053512
(
2016
).
18.
H.
Shibata
and
R.
Takaki
, “
A novel method to predict current voltage characteristics of positive corona discharges based on a perturbation technique. I. Local analysis
,”
AIP Adv.
7
,
115026
(
2017
).
19.
J. S.
Townsend
and
P. J.
Edmunds
, “
The discharge of electricity from cylinders and points
,”
Philos. Mag. Ser. 6
27
(
161
),
789
801
(
1914
).
20.
J. S.
Townsend
,
Electricity in Gases
(
Clarendon Press
,
1915
).
21.
J.
Feng
, “
An analysis of corona currents between two concentric cylindrical electrodes
,”
J. Electrostat.
46
(
1
),
37
48
(
1999
).
22.
Y.
Zheng
,
B.
Zhang
, and
J.
He
, “
Self-sustained criterion with photoionization for positive dc corona plasmas between coaxial cylinders
,”
Phys. Plasmas
22
(
6
),
063514
(
2015
).
23.
G. W.
Penney
and
G. T.
Hummert
, “
Photoionization measurements in air, oxygen, and nitrogen
,”
J. Appl. Phys.
41
(
2
),
572
577
(
1970
).
24.
E. J.
Hinch
,
Perturbation Methods
, Cambridge Texts in Applied Mathematics (
Cambridge University Press
,
1991
).
25.
R. T.
Waters
and
W. B.
Stark
, “
Characteristics of the stabilized glow discharge in air
,”
J. Phys. D: Appl. Phys.
8
,
416
426
(
1975
).
26.
R. M.
Corless
,
G. H.
Gonnet
,
D. E. G.
Hare
,
D. J.
Jeffrey
, and
D. E.
Knuth
, “
On the Lambert W function
,”
Adv. Comput. Math.
5
(
1
),
329
359
(
1996
).
27.
J. M.
Meek
and
J. D.
Craggs
,
Electrical Breakdown of Gases
(
Oxford University Press
,
1953
), Chap. 1, pp.
1
78
.
28.
J. R.
Roth
,
Industrial Plasma Engineering, Principles
(
IOP Publishing Ltd
.,
London
,
1995
), Vol.
1
, Chap. 8, pp.
237
282
.
29.
R.
Morrow
, “
The theory of positive glow corona
,”
J. Phys. D: Appl. Phys.
30
,
3099
3114
(
1997
).
30.
G. J. M.
Hagelaar
and
L. C.
Pitchford
, “
Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models
,”
Plasma Sources Sci. T
14
(
4
),
722
733
(
2005
).
31.
M. L.
Huertas
,
A. M.
Marty
,
J.
Fontan
, and
G.
Duffa
, “
Measurement of mobility and mass of atmospheric ions
,”
J. Aerosol. Sci.
2
,
145
150
(
1971
).
32.
M. L.
Huertas
and
J.
Fontan
, “
Evolution times of tropospheric positive ions
,”
Atmos. Environ.
9
,
1018
1026
(
1975
).
33.
N.
Fujioka
,
Y.
Tsunoda
,
A.
Sugimura
, and
K.
Arai
, “
Influence of humidity on variation of ion mobility with life time in atmospheric air
,”
IEEE Trans. Power Appar. Syst.
PAS-102
(
4
),
911
917
(
1983
).
34.
G.
Horvath
,
J. D.
Skalny
,
N. J.
Mason
,
M.
Klas
,
M.
Zahoran
,
R.
Vladoiu
, and
M.
Manole
, “
Corona discharge experiments in admixtures of N2 and CH4: A laboratory simulation of Titan's atmosphere
,”
Plasma Sources Sci. Technol.
18
,
034016
(
2009
).
35.

By definition W(yey)=y for yR and x=W(x)eW(x) for x1/e.

36.
See www.lxcat.net for IST-lisbon (N2,CH4) and Phelps database (N2,O2); accessed 10 October
2017
.
37.
See www.lxcat.net for Phelps and Vielhand databases; accessed 10 October
2017
.
You do not currently have access to this content.