One-dimensional particle-in-cell simulation is used to simulate the capacitively coupled argon plasma for a range of excitation frequency from 13.56 MHz to 100 MHz. The argon chemistry set can, selectively, include two metastable levels enabling multi-step ionization and metastable pooling. The results show that the plasma density decreases when metastable atoms are included with higher discrepancy at a higher excitation frequency. The contribution of multistep ionization to the overall density increases with the excitation frequency. The electron temperature increases with the inclusion of metastable atoms and decreases with the excitation frequency. At a lower excitation frequency, the density of Ar** (3p5 4p, 13.1 eV) is higher than that of Ar* (3p5 4s, 11.6 eV), whereas at higher excitation frequencies, the Ar* (3p5 4s, 11.6 eV) is the dominant metastable atom. The metastable and electron temperature profile evolve from a parabolic profile at a lower excitation frequency to a saddle type profile at a higher excitation frequency. With metastable, the electron energy distribution function (EEDF) changes its shape from Druyvesteyn type, at a low excitation frequency, to bi-Maxwellian, at a high frequency plasma excitation; however, a three-temperature EEDF is observed without metastable atoms.

1.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
John Wiley & Sons
,
New York
,
1994
).
2.
H.
Curtins
,
N.
Wyrsch
,
M.
Favre
, and
A. V.
Shah
,
Plasma Chem. Plasma Process.
7
,
267
(
1987
).
3.
M.
Surendra
and
D. B.
Graves
,
Appl. Phys. Lett.
59
,
2091
(
1991
).
4.
A. A.
Howling
,
J. L.
Dorier
,
C.
Hollenstein
,
U.
Kroll
, and
F.
Finger
,
J. Vac. Sci. Technol. A
10
,
1080
(
1992
).
5.
H. H.
Goto
,
H. D.
Lowe
, and
T.
Ohmi
,
J. Vac. Sci. Technol. A
10
,
3048
(
1992
).
6.
M. J.
Colgan
,
M.
Meyyappan
, and
D. E.
Murnick
,
Plasma Sources Sci. Technol.
3
,
181
(
1994
).
7.
U.
Graf
,
J.
Meier
,
U.
Kroll
,
J.
Bailat
,
C.
Droz
,
E.
Vallat-Sauvain
, and
A.
Shah
,
Thin Solid Films
427
,
37
(
2003
).
8.
K. S.
Kim
,
N.
Sirse
,
K. H.
Kim
,
A. R.
Ellingboe
,
K. N.
Kim
, and
G. Y.
Yeom
,
J. Phys. D: Appl. Phys.
49
,
395201
(
2016
).
9.
K. S.
Kim
,
K. H.
Kim
,
Y. J.
Ji
,
J. W.
Park
,
J. H.
Shin
,
A. R.
Ellingboe
, and
G. Y.
Yeom
,
Sci. Rep.
7
,
13585
(
2017
).
10.
T.
Ohiwa
,
H.
Hayashi
,
I.
Sakai
,
A.
Kojima
, and
E.
Shinomiya
,
Jpn. J. Appl. Phys., Part 1
43
,
6413
(
2004
).
11.
W.
Schwarzenbach
,
A. A.
Howling
,
M.
Fivaz
,
S.
Brunner
, and
Ch.
Hollenstein
,
J. Vac. Sci. Technol. A
14
,
132
(
1996
).
12.
E.
Abdel-Fattah
and
H.
Sugai
,
Jpn. J. Appl. Phys., Part 1
42
,
6569
(
2003
).
13.
E.
Abdel-Fattah
and
H.
Sugai
,
Appl. Phys. Lett.
83
,
1533
(
2003
).
14.
E.
Abdel-Fattah
,
M.
Bazavan
, and
H.
Sugai
,
Phys. Plasmas
19
,
113503
(
2012
).
15.
E.
Abdel-Fattah
and
H.
Sugai
,
Phys. Plasmas
20
,
023501
(
2013
).
16.
S.
Sharma
,
N.
Sirse
,
P. K.
Kaw
,
M. M.
Turner
, and
A. R.
Ellingboe
,
Phys. Plasmas
23
,
110701
(
2016
).
17.
M. A.
Lieberman
,
IEEE Trans. Plasma Sci
16
,
638
(
1988
).
18.
S.
Rauf
,
K.
Bera
, and
K.
Collins
,
Plasma Sources Sci. Technol.
19
,
015014
(
2010
).
19.
S.
Wilczek
,
J.
Trieschmann
,
J.
Schulze
,
E.
Schuengel
,
R. P.
Brinkmann
,
A.
Derzsi
,
I.
Korolov
,
Z.
Donko
, and
T.
Mussenbrock
,
Plasma Sources Sci. Technol.
24
,
024002
(
2015
).
20.
N.
Sirse
,
T.
Tsutsumi
,
M.
Sekine
,
M.
Hori
, and
A. R.
Ellingboe
,
J. Phys. D: Appl. Phys.
50
,
335205
(
2017
).
21.
D. J.
Economou
,
J. Phys. D: Appl. Phys.
47
,
303001
(
2014
).
22.
K.
Okazaki
,
T.
Makabe
, and
Y.
Yamaguchi
,
Appl. Phys. Lett.
54
,
1742
(
1989
).
23.
T.
Makabe
,
N.
Nakano
, and
Y.
Yamaguchi
,
Phys. Rev. A
45
,
2520
(
1992
).
24.
D. P.
Lymberopoulos
and
D. J.
Economou
,
J. Appl. Phys.
73
,
3668
(
1993
).
25.
D. P.
Lymberopoulos
and
D. J.
Economou
,
Appl. Phys. Lett.
63
,
2478
(
1993
).
26.
S.
Rauf
and
M. J.
Kushner
,
J. Appl. Phys.
82
,
2805
(
1997
).
27.
M.
Roberto
,
H. B.
Smith
, and
J. P.
Verboncoeur
,
IEEE Trans. Plasma Sci.
31
,
1292
(
2003
).
28.
L.
Lauro-Taroni
,
M. M.
Turner
, and
N. S.
Braithwaite
,
J. Phys. D
37
,
2216
(
2004
).
29.
G. R.
Scheller
,
R. A.
Gottscho
,
D. B.
Graves
, and
T.
Intrator
,
J. Appl. Phys.
64
,
598
(
1988
).
30.
L.
Sansonnens
,
A. A.
Howling
,
Ch.
Hollenstein
,
J.-L.
Dorier
, and
U.
Kroll
,
J. Phys. D: Appl. Phys.
27
,
1406
(
1994
).
31.
B. K.
McMillin
and
M. R.
Zachariah
,
J. Appl. Phys.
77
,
5538
(
1995
).
32.
B. K.
McMillin
and
M. R.
Zachariah
,
J. Appl. Phys.
79
,
77
(
1996
).
33.
C.
Collard
,
S.
Shannon
,
J. P.
Holloway
, and
M. L.
Brake
,
IEEE Trans. Plasma Sci.
28
,
2187
(
2000
).
34.
M.
Ishimaru
,
T.
Ohba
,
T.
Ohmori
,
T.
Yagisawa
,
T.
Kitajima
, and
T.
Makabe
,
Appl. Phys. Lett.
92
,
071501
(
2008
).
35.
G. A.
Hebner
,
E. V.
Barnat
,
P. A.
Miller
,
A. M.
Paterson
, and
J. P.
Holland
,
Plasma Sources Sci. Technol.
15
,
879
(
2006
).
36.
Y.
Zhang
,
X.
Xu
, and
Y.
Wang
,
Phys. Plasmas
17
,
033507
(
2010
).
37.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
Adam Hilger
,
Bristol
,
1988
).
38.
C. K.
Birdsall
,
Plasma Physics via Computer Simulation
(
Adam Hilger
,
Bristol
,
1991
).
39.
M. M.
Turner
,
A.
Derzsi
,
Z.
Donko
,
D.
Eremin
, and
S. J.
Kelly
,
Phys. Plasmas
20
,
013507
(
2013
).
40.
S.
Sharma
and
M. M.
Turner
,
Plasma Sources Sci. Technol.
22
,
035014
(
2013
).
41.
S.
Sharma
and
M. M.
Turner
,
Phys. Plasmas
20
,
073507
(
2013
).
42.
S.
Sharma
,
S. K.
Mishra
, and
P. K.
Kaw
,
Phys. Plasmas
21
,
073511
(
2014
).
You do not currently have access to this content.