We have studied the parametric interaction between a fast magnetosonic (FM) mode and a lower oblique resonance (LOR) mode in a cold, magnetized plasma using a kinetic, three dimensional Particle-in-Cell simulation code called the Large Scale Plasma. The FM mode is excited with a loop antenna driven at a frequency below the lower hybrid frequency (ωLH), while the LOR is excited at a frequency above ωLH. For historical purposes explained in the Introduction, we call the antennas which drive the FM mode and LOR mode Extremely Low Frequency (ELF) and Very Low Frequency (VLF) antennas, respectively. The antennas are modeled as magnetic dipoles (ρant = 0) and are assigned a time varying current density within a finite sized current loop. The VLF and ELF antennas are driven at 10 A and 3 A, respectively. The parametric interaction is excited with a combined ELF/VLF antenna (which we call a parametric antenna) and includes both antennas driven simultaneously in the same simulation domain. We show that the parametric antenna non-linearly excites electromagnetic (EM) whistler waves to a greater extent than the VLF antenna alone. We also show that the parametric excitation of EM whistler waves leads to greater emitted EM power (measured in Watts) compared with a VLF antenna alone.

1.
H.
Viberg
,
Y. V.
Khotyaintsev
,
A.
Vaivads
,
M.
André
,
H. S.
Fu
, and
N.
Cornilleau-Wehrlin
,
J. Geophys. Res. (Space Phys.)
119
,
2605
, (
2014
).
2.
M.
Spasojevic
,
J. Geophys. Res. (Space Phys.)
121
,
7547
, (
2016
).
3.
S. P.
Gary
,
E. E.
Scime
,
J. L.
Phillips
, and
W. C.
Feldman
,
J. Geophys. Res.
99
,
23391
, (
1994
).
4.
Y.
Hobara
,
O. A.
Molchanov
,
M.
Hayakawa
, and
K.
Ohta
,
J. Geophys. Res.
100
,
23523
, (
1995
).
5.
D. S.
Orlowski
and
C. T.
Russell
,
Adv. Space Res.
16
,
137
(
1995
).
6.
R. L.
Stenzel
,
J. Geophys. Res.
104
,
14379
, (
1999
).
7.
R. L.
Smith
,
J. Geophys. Res.
66
,
3699
, (
1961
).
8.
D.
Mourenas
,
A. V.
Artemyev
,
Q.
Ma
,
O. V.
Agapitov
, and
W.
Li
,
Geophys. Res. Lett.
43
,
4155
, (
2016
).
9.
V.
Fiala
,
E. N.
Kruchina
, and
V. I.
Sotnikov
,
Plasma Phys. Controlled Fusion
29
,
1511
(
1987
).
10.
R. K.
Fisher
and
R. W.
Gould
,
Phys. Fluids
14
,
857
(
1971
).
11.
T. N. C.
Wang
and
T. F.
Bell
,
J. Geophys. Res.
77
,
1174
, (
1972
).
12.
RA.
Helliwell
,
Whistlers and Related Ionospheric Phenomena
(
Stanford University Press
,
1965
).
13.
SA.
Cummer
, “
Lightning and ionospheric remote sensing using VLF/ELF radio atmospherics
,” Ph.D. thesis (
Stanford University
,
1997
).
14.
V. I.
Karpman
,
Phys. Lett. A
117
,
73
(
1986
).
15.
I. G.
Kondratev
,
A. V.
Kudrin
, and
T. M.
Zaboronkova
,
Radio Sci.
27
,
315
, (
1992
).
16.
V.
Sotnikov
,
T.
Kim
,
J.
Caplinger
,
D.
Main
,
E.
Mishin
,
N.
Gershenzon
,
T.
Genoni
,
I.
Paraschiv
, and
D.
Rose
,
Plasma Phys. Controlled Fusion
60
(
4
),
044014
(
2018
).
17.
J. M.
Urrutia
and
R. L.
Stenzel
,
Phys. Plasmas
21
,
122107
(
2014
).
18.
V.
Sotnikov
,
T.
Kim
,
J.
Caplinger
,
D.
Main
,
E.
Mishin
,
N.
Gershenzon
,
T.
Genoni
,
I.
Paraschiv
, and
D.
Rose
, in
Advanced Maui Optical and Space Surveillance Technologies Conference
(
2016
), p.
119
.
19.
V. I.
Sotnikov
,
G. I.
Solovyev
,
M.
Ashour-Abdalla
,
D.
Schriver
, and
V.
Fiala
,
Radio Sci.
28
,
1087
, (
1993
).
20.
D. R.
Welch
,
D. V.
Rose
,
R. E.
Clark
,
T. C.
Genoni
, and
T. P.
Hughes
,
Comput. Phys. Commun.
164
,
183
(
2004
).
21.
D. R.
Welch
,
D. V.
Rose
,
M. E.
Cuneo
,
R. B.
Campbell
, and
T. A.
Mehlhorn
,
Phys. Plasmas
13
,
063105
(
2006
).
22.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics via Computer Simulation, Series in Plasma Physics
(
Taylor and Francis
,
2005
).
23.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
John Wiley and Sons, Inc.
,
1999
), Chap. 6.7.
24.
ML.
Boas
,
Mathematical Methods in the Physical Sciences
, 2nd ed. (
John Wiley and Sons Inc
,
1983
), Chap. 15.5.
25.
T. N. C.
Wang
and
T. F.
Bell
,
Radio Sci.
4
,
167
, (
1969
).
26.
R. Z.
Sagdeev
,
V. I.
Sotnikov
,
V. D.
Shapiro
, and
V. I.
Shevchenko
,
JETP. Lett.
26
(11),
582
(
1977
).
You do not currently have access to this content.