The lower-hybrid waves can be driven unstable by the transverse ion beam in a partially magnetized plasma of a finite length. This instability mechanism, which relies on the presence of fixed potential boundary conditions, is of particular relevance to axially propagating modes in a Hall effect thruster. The linear and nonlinear regimes of this instability are studied here with numerical simulations. In the linear regime, our results agree with analytical and numerical eigenvalue analysis conducted by Kapulkin and Behar [IEEE Trans. Plasma Sci. 43, 64 (2015)]. It is shown that in nonlinear regimes, the mode saturation results in coherent nonlinear structures. For the aperiodic instability [with Re(ω)=0—odd Pierce zones], the unstable eigen-function saturates into new stationary nonlinear equilibrium. In the case of oscillatory instability [Re(ω)0—even Pierce zones], the instability results in the nonlinear oscillating standing wave. It is also shown that finite Larmor radius effects stabilize instability for parameters corresponding to a large number of Pierce zones, and therefore, only few first zones remain relevant.

1.
A.
Kapulkin
and
E.
Behar
, “
Ion beam instability in Hall thrusters
,”
IEEE Trans. Plasma Sci.
43
,
64
(
2015
).
2.
A.
Smirnov
,
Y.
Raitses
, and
N. J.
Fisch
, “
Experimental and theoretical studies of cylindrical Hall thrusters
,”
Phys. Plasmas
14
(
5
),
057106
(
2007
).
3.
T.
Ito
,
C. V.
Young
, and
M. A.
Cappelli
, “
Self-organization in planar magnetron microdischarge plasmas
,”
Appl. Phys. Lett.
106
(
25
),
254104
(
2015
).
4.
A. B.
Mikhailovskii
,
Theory of Plasma Instabilities, Vol. 1: Instabilities of a Homogeneous Plasma
(
Springer
,
New York
,
1974
).
5.
A. I.
Smolyakov
,
O.
Chapurin
,
W.
Frias
,
O.
Koshkarov
,
I.
Romadanov
,
T.
Tang
,
M.
Umansky
,
Y.
Raitses
,
I. D.
Kaganovich
, and
V. P.
Lakhin
, “
Fluid theory and simulations of instabilities, turbulent transport and coherent structures in partially-magnetized plasmas of E × B discharges
,”
Plasma Phys. Controlled Fusion
59
,
014041
(
2017
).
6.
J. R.
Pierce
, “
Limiting stable current in electron beams in the presence of ions
,”
J. Appl. Phys.
15
,
721
(
1944
).
7.
O.
Koshkarov
,
A. I.
Smolyakov
,
I. D.
Kaganovich
, and
V. I.
Ilgisonis
, “
Ion sound instability driven by the ion flows
,”
Phys. Plasmas
22
,
052113
(
2015
).
8.
T.
Klinger
,
F.
Greiner
,
A.
Rohde
,
A.
Piel
, and
M. E.
Koepke
, “
Van der Pol behavior of relaxation oscillations in a periodically driven thermionic discharge
,”
Phys. Rev. E
52
,
4316
4327
(
1995
).
9.
C.
Rapson
,
O.
Grulke
,
K.
Matyash
, and
T.
Klinger
, “
The effects of boundaries on the ion acoustic beam-plasma instability in experiment and simulations
,”
Phys. Plasmas
21
,
052103
(
2014
).
10.
V. I.
Kuznetzov
and
A. Y.
Ender
, “
Stability theory of Knudsen plasma diodes
,”
Plasma Phys. Rep.
41
,
905
917
(
2015
).
11.
O.
Koshkarov
,
A. I.
Smolyakov
,
I. V.
Romadanov
,
O.
Chapurin
,
M. V.
Umansky
,
Y.
Raitses
, and
I. D.
Kaganovich
, “
Current flow instability and nonlinear structures in dissipative two-fluid plasmas
,”
Phys. Plasmas
25
,
011604
(
2018
).
12.
S.
Chable
and
F.
Rogier
, “
Numerical investigation and modeling of stationary plasma thruster low frequency oscillations
,”
Phys. Plasmas
12
,
033504
(
2005
).
13.
J. P.
Boeuf
and
L.
Garrigues
, “
Low frequency oscillations in a stationary plasma thruster
,”
J. Appl. Phys.
84
,
3541
(
1998
).
14.
S.
Barral
and
E.
Ahedo
, “
Low-frequency model of breathing oscillations in Hall discharges
,”
Phys. Rev. E
79
,
046401
(
2009
).
15.
B. D.
Dudson
,
M. V.
Umansky
,
X. Q.
Xu
,
P. B.
Snyder
, and
H. R.
Wilson
, “
BOUT++: A framework for parallel plasma fluid simulations
,”
Comput. Phys. Commun.
180
,
1467
(
2009
).
16.
J.
Vaudolon
,
B.
Khiar
, and
S.
Mazouffre
, “
Time evolution of the electric field in a Hall thruster
,”
Plasma Sources Sci. Technol.
23
,
022002
(
2014
).
17.
J.
Vaudolon
and
S.
Mazouffre
, “
Observation of high-frequency ion instabilities in a cross-field plasma
,”
Plasma Sources Sci. Technol.
24
,
032003
(
2015
).
18.
B. B.
Godfrey
, “
Oscillatory nonlinear electron flow in a pierce diode
,”
Phys. Fluids
30
(
5
),
1553
1560
(
1987
).
19.
H.
Matsumoto
,
H.
Yokoyama
, and
D.
Summers
, “
Computer simulations of the chaotic dynamics of the pierce beam–plasma system
,”
Phys. Plasmas
3
(
1
),
177
191
(
1996
).
20.
S.
Kuhn
, “
The physics of bounded plasma systems (BPS's): Simulation and interpretation
,”
Contrib. Plasma Phys.
34
(
4
),
495
538
(
1994
).
21.
R. C.
Davidson
,
Methods in Nonlinear Plasma Theory
(
Academic Press
,
New York
,
2012
).
22.
A. A.
Litvak
and
N. J.
Fisch
, “
Resistive instabilities in Hall current plasma discharge
,”
Phys. Plasmas
8
,
648
(
2001
).
You do not currently have access to this content.