There are still many missing elements to complete the physical picture at the basis of the Hall thruster functioning. The origin of the anomalous electron cross-field transport often ascribed to azimuthal electron E × B drift instability remains decoupled from self-consistent ion axial acceleration and radial boundary conditions, at the same time. This study represents the first attempt to correlate the different mechanisms contributing to the electron transport by means of a fully kinetic three-dimensional Particle-in-Cell model. A geometrical scaling scheme has been used to make the simulation possible. This scheme irremediably changes what are some salient characteristics of the discharge, such as the wall interaction and the axial component of the electric field. For this reason, a critical assessment of the effects of reducing dimensions has been addressed. The present paper deals with the physics of discharge channel. Results confirm the occurrence of E × B drift instability along the azimuthal direction. The modulation is almost standing wave: it moves back and forth travelling only a short distance before being axially convected away. In addition, the dielectric floating potential nature of the lateral walls gives to the azimuthal modulation an important radial component creating an oblique pattern in the radial-azimuthal plane. As a consequence, the azimuthal electric field presents a double alternating structure: two phase-opposing waves are present in the first and second half of the radial extension between the two lateral walls. Finally, the effect of secondary electron emission from walls is not sufficient to guarantee the right electron current to neutralize the ion beam, but rather it works as an auxiliary mechanism (together with ion heating and azimuthal rotation) to saturate the electron drift instability leading to smaller amplitude oscillations.

1.
A. I.
Morozov
and
V. V.
Savelyev
, in
Reviews of Plasma Physics
, edited by
B. B.
Kadomstev
and
V. D.
Shafranov
(
Kluwer Academic/Plenum Publishers
,
New York
,
2000
), Vol.
21
.
2.
V. V.
Zhurin
,
H. R.
Kaufman
, and
R. S.
Robinson
,
Plasma Sources Sci. Technol.
8
,
R1
(
1999
).
3.
J.-P.
Boeuf
,
J. Appl. Phys.
121
,
011101
(
2017
).
4.
C. R.
Koppel
and
D.
Estublier
, in
29th International Electric Propulsion Conference
(
The Electric Rocket Propulsion Society
,
Princeton
,
2005
), Paper No. IEPC-05–119.
5.
N. B.
Meezan
,
W. A.
Hargus
, Jr.
, and
M. A.
Cappelli
,
Phys. Rev. E
63
,
026410
(
2001
).
6.
T.
Lafleur
,
S. D.
Baalrud
, and
P.
Chabert
,
Phys. Plasmas
23
,
053503
(
2016
).
7.
T.
Lafleur
,
S. D.
Baalrud
, and
P.
Chabert
,
Plasma Sources Sci. Technol.
26
,
024008
(
2017
).
8.
J. C.
Adam
,
A.
Héron
, and
G.
Laval
,
Phys. Plasmas
11
,
295
(
2004
).
9.
A.
Ducrocq
,
J. C.
Adam
,
A.
Héron
, and
G.
Laval
,
Phys. Plasmas
13
,
102111
(
2006
).
10.
M.
Keidar
and
I. I.
Beilis
,
IEEE Trans. Plasma Sci.
34
(
3
),
804
(
2006
).
11.
F.
Taccogna
,
S.
Longo
,
M.
Capitelli
, and
R.
Schneider
,
Contrib. Plasma Phys.
48
(
4
),
375
(
2008
).
12.
Y.
Raitses
,
I. D.
Kaganovich
,
A.
Khrabrov
,
D.
Sydorenko
,
N. J.
Fisch
, and
A.
Smolyakov
,
IEEE Trans. Plasma Sci.
39
(
4
),
995
(
2011
).
13.
F.
Taccogna
,
S.
Longo
,
M.
Capitelli
, and
R.
Schneider
,
Appl. Phys. Lett.
94
,
251502
(
2009
).
14.
M. D.
Campanell
,
A. V.
Khrabrov
, and
I. D.
Kaganovich
,
Phys. Plasmas
19
,
123513
(
2012
).
15.
A. I.
Smolyakov
,
W.
Frias
,
I. D.
Kaganovich
, and
Y.
Raitses
,
Phys. Rev. Lett.
111
,
115002
(
2013
).
16.
W.
Frias
,
A. I.
Smolyakov
,
I. D.
Kaganovich
, and
Y.
Raitses
,
Phys. Plasmas
21
,
062113
(
2014
).
17.
I. J.
Mikellides
and
I.
Katz
,
Phys. Rev. E
86
,
046703
(
2012
).
18.
J.
Bareilles
,
G. J. M.
Hagelaar
,
L.
Garrigues
,
C.
Boniface
,
J. P.
Boeuf
, and
N.
Gascon
,
Phys. Plasmas
11
(
6
),
3035
(
2004
).
19.
J. W.
Koo
and
I. D.
Boyd
,
Phys. Plasmas
13
,
033501
(
2006
).
20.
F. I.
Parra
,
E.
Ahedo
,
J. M.
Fife
, and
M.
Martínez-Sánchez
,
J. Appl. Phys.
100
,
023304
(
2006
).
21.
L.
Garrigues
,
J.
Pérez-Luna
,
J.
Lo
,
G. J. M.
Hagelaar
,
J. P.
Boeuf
, and
S.
Mazouffre
,
Appl. Phys. Lett.
95
,
141501
(
2009
).
22.
L.
Garrigues
,
S.
Mazouffre
, and
G.
Bourgeois
,
J. Appl. Phys.
111
,
113301
(
2012
).
23.
D.
Tskhakaya
,
K.
Matyash
,
R.
Schneider
, and
F.
Taccogna
,
Contrib. Plasma Phys.
47
(
8-9
),
563
(
2007
).
24.
25.
T.
Lafleur
,
S. D.
Baalrud
, and
P.
Chabert
,
Phys. Plasmas
23
,
053502
(
2016
).
26.
S.
Janhunen
,
A.
Smolyakov
,
O.
Chapurin
,
D.
Sydorenko
,
I.
Kaganovich
, and
Y.
Raitses
,
Phys. Plasmas
25
,
011608
(
2018
).
27.
F.
Taccogna
,
R.
Schneider
,
S.
Longo
, and
M.
Capitelli
,
Plasma Sources Sci. Technol.
17
,
024003
(
2008
).
28.
A.
Héron
and
J. C.
Adam
,
Phys. Plasmas
20
,
082313
(
2013
).
29.
V.
Croes
,
T.
Lafleur
,
Z.
Bonaventura
,
A.
Bourdon
, and
P.
Chabert
,
Plasma Sources Sci. Technol.
26
,
034001
(
2017
).
30.
K.
Hara
and
S.
Cho
, in
35th International Electric Propulsion Conference
(
The Electric Rocket Propulsion Society
,
Atlanta, GE
,
2017
), paper No. IEPC-2017-495.
31.
P.
Coche
and
L.
Garrigues
,
Phys. Plasmas
21
,
023503
(
2014
).
32.
T.
Lafleur
and
P.
Chabert
,
Plasma Sources Sci. Technol.
27
,
015003
(
2018
).
33.
T.
Lafleur
,
R.
Martorelli
,
P.
Chabert
, and
A.
Bourdon
,
Phys. Plasmas
25
,
061202
(
2018
).
34.
J. P.
Boeuf
and
L.
Garrigues
,
Phys. Plasmas
25
,
061204
(
2018
).
35.
S.
Tsikata
,
C.
Honoré
,
N.
Lemoine
, and
D. M.
Grésillon
,
Phys. Plasmas
17
,
112110
(
2010
).
36.
A.
Lazurenko
,
G.
Coduti
,
S.
Mazouffre
, and
G.
Bonhomme
,
Phys. Plasmas
15
,
034502
(
2008
).
37.
S.
Tsikata
,
N.
Lemoine
,
V.
Pisarev
, and
D. M.
Gresillon
,
Phys. Plasmas
16
,
033506
(
2009
).
38.
M.
Hirakawa
and
Y.
Arakawa
, in
24th International Electric Propulsion Conference
(
The Electric Rocket Propulsion Society
,
Moscow
,
1995
), paper No. IEPC-1995-164.
39.
M.
Hirakawa
and
Y.
Arakawa
, “
Numerical simulation of plasma particle behavior in a Hall thruster
,” AIAA Paper No. 96-3195, 1996.
40.
F.
Taccogna
and
P.
Minelli
, “
Three-dimensional particle-in-cell model of Hall thruster: The near-field plume region
,”
Phys. Plasmas
(unpublished).
41.
E. Y.
Choueiri
,
Phys. Plasmas
8
,
1411
(
2001
).
42.
F.
Taccogna
,
S.
Longo
,
M.
Capitelli
, and
R.
Schneider
,
Phys. Plasmas
12
,
43502
(
2005
).
43.
J.
Duras
,
K.
Matyash
,
D.
Tskhakaya
,
O.
Kalentev
, and
R.
Schneider
,
Contrib. Plasma Phys.
54
(
8
),
697
(
2014
).
44.
G. L.
Delzanno
and
E.
Camporeale
,
J. Comput. Phys.
253
,
259
(
2013
).
45.
L. B.
King
, in
29th International Electric Propulsion Conference
(
The Electric Rocket Propulsion Society
,
Princeton, NJ
,
2005
), paper No. IEPC-2005-258.
46.
F.
Taccogna
,
S.
Longo
,
M.
Capitelli
, and
R.
Schneider
,
Phys. Plasmas
12
,
053502
(
2005
).
47.
J. C.
Adam
,
J. P.
Boeuf
,
N.
Dubuit
,
M.
Dudeck
,
L.
Garrigues
,
D.
Gresillon
,
A.
Heron
,
G. J. M.
Hagelaar
,
V.
Kulaev
,
N.
Lemoine
,
S.
Mazouffre
,
J.
Perez Luna
,
V.
Pisarev
, and
S.
Tsikata
,
Plasma Phys. Controlled Fusion
50
,
124041
(
2008
).
48.
K.
Hara
,
M. J.
Sekerak
,
I. D.
Boyd
, and
A. D.
Gallimore
,
J. Appl. Phys.
115
,
203304
(
2014
).
49.
M. J.
Sekerak
,
B. W.
Longmier
,
A. D.
Gallimore
,
D. L.
Brown
,
R. R.
Hofer
, and
J. E.
Polk
,
IEEE Trans. Plasma Sci.
43
(
1
),
72
(
2015
).
50.
A.
Lazurenko
,
T. D.
de Wit
,
C.
Cavoit
,
V.
Krasnoselskikh
,
A.
Bouchoule
, and
M.
Dudeck
,
Phys. Plasmas
14
,
033504
(
2007
).
51.
L.
Wei
,
K.
Han
,
C.
Wang
,
C.
Zhang
, and
D.
Yu
,
Contrib. Plasma Phys.
52
,
761
(
2012
).
52.
A. W.
Smith
and
M. A.
Cappelli
,
Phys. Plasmas
16
,
073504
(
2009
).
53.
S.
Balay
,
S.
Abhyankar
,
M.
Adams
,
J.
Brown
,
P. B. K.
Buschelman
,
L.
Dalcin
,
V.
Eijkhout
,
W. D.
Gropp
,
D.
Kaushik
,
M. G.
Knepley
,
L. C.
McInnes
,
K.
Rupp
,
B. F.
Smith
,
S.
Zampini
, and
H.
Zhang
, see http://www.mcs.anl.gov/petsc for Portable, extensible toolkit for scientific computation (
2015
).
54.
M. A.
Furman
and
M. T. F.
Pivi
,
Phys. Rev. Spec. Top.–Accel. Beams
5
,
124404
(
2002
).
55.
M.
Belhaj
,
K.
Guerch
,
P.
Sarrailh
, and
N.
Arcis
,
Nucl. Instrum. Methods Phys. Res. B
362
,
163
(
2015
).
56.
F.
Taccogna
,
J. Plasma Phys.
81
(
1
),
305810102
(
2015
).
57.
J.
Szabo
,
N.
Warner
,
M.
Martinez-Sanchez
, and
O.
Batishchev
,
J. Propul. Power
30
(
1
),
197
(
2014
).
58.
I.
Katz
,
R.
Hofer
, and
D.
Goebel
,
IEEE Trans. Plasma Sci.
36
(
5
),
2015
(
2008
).
59.
L. K.
Jha
,
O. P.
Santosh Kumar, Roy
, and
P.
Kumar
,
Phys. Scr.
77
,
015304
(
2008
).
60.
E. W.
Bell
,
N.
Djuric
, and
G. H.
Dunn
,
Phys. Rev. A
48
(
6
),
4286
(
1993
).
61.
I.
Katz
,
A. L.
Ortega
,
B. A.
Jorns
, and
I. G.
Mikellides
, “
Growth and saturation of ion acoustic waves in Hall thrusters
,” AIAA Paper No. 2016-4534,
2016
.
62.
J.
Cavalier
,
N.
Lemoine
,
G.
Bonhomme
,
S.
Tsikata
,
C.
Honoré
, and
D.
Grésillon
,
Phys. Plasmas
20
,
082107
(
2013
).
63.
M. K.
Scharfe
,
C. A.
Thomas
,
D. B.
Scharfe
,
N.
Gascon
,
M. A.
Cappelli
, and
E.
Fernandez
,
IEEE Trans. Plasma Sci.
36
(
5
),
2058
(
2008
).
64.
A. A.
Litvak
and
N. J.
Fish
,
Phys. Plasmas
11
(
4
),
1379
(
2004
).
65.
A. A.
Litvak
,
Y.
Raitses
, and
N. J.
Fish
,
Phys. Plasmas
11
(
4
),
1701
(
2004
).
66.
R. A.
Martinez
,
H.
Dao
, and
M. L. R.
Walker
,
J. Propul. Power
30
(
1
),
209
(
2014
).
67.
S.
Barral
,
K.
Makowski
,
Z.
Peradzyński
, and
M.
Dudeck
,
Phys. Plasmas
12
,
073504
(
2005
).
68.
S.
Mazouffre
,
F.
Dubois
,
L.
Albarède
,
D.
Pagnon
,
M.
Touzeau
, and
M.
Dudeck
, in
IEEE Proceedings of the International Conference on Recent Advances in Space Technologies RAST03
(
2003
), p.
69
.
69.
S.
Tsikata
,
A.
Héron
, and
C.
Honoré
,
Phys. Plasmas
24
,
053519
(
2017
).
70.
E.
Fernandez
,
M. K.
Scharfe
,
C. A.
Thomas
,
N.
Gascon
, and
M. A.
Cappelli
,
Phys. Plasmas
15
,
012102
(
2008
).
71.
M.
Lampe
,
W.
Manheimer
,
J.
McBride
,
J.
Orens
,
R.
Shanny
, and
R.
Sudan
,
Phys. Rev. Lett.
26
,
1221
(
1971
).
You do not currently have access to this content.