The simulation of magnetron discharges requires a quantitatively correct mathematical model of the magnetic field structure. This study presents a method to construct such a model on the basis of a spatially restricted set of experimental data and a plausible a priori assumption on the magnetic field configuration. The example in focus is that of a planar circular magnetron. The experimental data are Hall probe measurements of the magnetic flux density in an accessible region above the magnetron plane [P. D. Machura et al., Plasma Sources Sci. Technol. 23, 065043 (2014)]. The a priori assumption reflects the actual design of the device, and it takes the magnetic field emerging from a center magnet of strength mC and vertical position dC and a ring magnet of strength mR, vertical position dR, and radius R. An analytical representation of the assumed field configuration can be formulated in terms of generalized hypergeometric functions. Fitting the ansatz to the experimental data with a least square method results in a fully specified analytical field model that agrees well with the data inside the accessible region and, moreover, is physically plausible in the regions outside of it. The outcome proves superior to the result of an alternative approach which starts from a multimode solution of the vacuum field problem formulated in terms of polar Bessel functions and vertical exponentials. As a first application of the obtained field model, typical electron and ion Larmor radii and the gradient and curvature drift velocities of the electron guiding center are calculated.

1.
P. D.
Machura
,
A.
Hecimovic
,
S.
Gallian
,
J.
Winter
, and
T.
de los Arcos
,
Plasma Sources Sci. Technol.
23
,
065043
(
2014
).
2.
J. A.
Thornton
,
J. Vac. Sci. Technol.
15
,
171
(
1978
).
3.
P. J.
Kelly
and
R. D.
Arnell
,
Vacuum
56
,
159
(
2000
).
4.
V.
Kousnetsov
,
K.
Macák
,
J. M.
Schneider
,
U.
Helmersson
, and
I.
Petrov
,
Surf. Coat. Technol.
122
,
290
(
1999
).
5.
J. P.
Boeuf
,
J. Appl. Phys.
121
,
011101
(
2017
).
6.
S.
Kadlec
and
J.
Musil
,
J. Vac. Sci. Technol. A
13
,
389
(
1995
).
7.
Wolfram Research, Inc.
,
Mathematica, Version 11.2
.
8.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
John Wiley & Sons, Inc.
,
New York
,
1999
), Chap. 5, p.
186
.
9.
L. J.
Slater
,
Generalized Hypergeometric Functions
(
Cambridge University Press
,
New York
,
1966
).
10.
R.
Balescu
,
Transport Processes in Plasmas Vol. 1 Classical Transport
(
Elsevier Science Publishing Company, Inc.
,
New York
,
1988
), Chap. 1, p.
48
.
11.
C.
Maszl
,
W.
Breilmann
,
J.
Benedikt
, and
A.
von Keudell
,
J. Phys. D
47
,
224002
(
2014
).
12.
A.
Rauch
and
A.
Anders
,
Vacuum
89
,
53
56
(
2013
).
You do not currently have access to this content.