Electron temperature and plasma density, as well as the electron energy distribution function (EEDF), have been obtained inside and outside the dielectric channel of a 200 W permanent magnet Hall thruster. Measurements were carried out by means of a cylindrical Langmuir probe mounted onto a compact fast moving translation stage. The 3D particle-in cell numerical simulations complement experiments. The model accounts for the crossed electric and magnetic field configuration in a weakly collisional regime where only electrons are magnetized. Since only the electron dynamics is of interest in this study, an artificial mass of ions corresponding to mi = 30 000me was used to ensure ions could be assumed at rest. The simulation domain is located at the thruster exit plane and does not include the cathode. The measured EEDF evidences a high-energy electron population that is superimposed onto the low energy bulk population outside the channel. Inside the channel, the EEDF is close to Maxwellian. Both the experimental and numerical EEDF depart from an equilibrium distribution at the channel exit plane, a region of high magnetic field. We therefore conclude that the fast electron group found in the experiment corresponds to the electrons emitted by the external cathode that reach the thruster discharge without experiencing collision events.

1.
S.
Mazouffre
, “
Electric propulsion for satellites and spacecraft: Established technologies and novel approaches
,”
Plasma Sources Sci. Technol.
25
,
033002
(
2016
).
2.
R. H.
Frisbee
, “
Advanced space propulsion for the 21st century
,”
J. Propul. Power
19
,
1129
1154
(
2003
).
3.
D. M.
Goebel
and
I.
Katz
,
Fundamentals of Electric Propulsion
(
Wiley
,
Hoboken, NJ
,
2008
).
4.
I.
Levchenko
,
K.
Bazaka
,
Y.
Ding
,
Y.
Raitses
,
S.
Mazouffre
,
T.
Henning
,
P. J.
Klar
,
S.
Shinohara
,
J.
Schein
,
L.
Garrigues
,
M.
Kim
,
D.
Lev
,
F.
Taccogna
,
R. W.
Boswell
,
C.
Charles
,
H.
Koizumi
,
S.
Yan
,
C.
Scharlemann
,
M.
Keidar
, and
S.
Xu
, “
Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers
,”
Appl. Phys. Rev.
5
,
011104
(
2018
).
5.
S. J.
Hall
,
B. A.
Jorns
,
A. D.
Gallimore
,
H.
Kamhawi
,
T. W.
Haag
,
J. A.
Mackey
,
J. H.
Gilland
,
P.
Peterson
, and
M. J.
Baird
, “
High-power performance of a 100-kW class nested Hall thruster
,” in
Proceedings of the 35th International Electric Propulsion Conference
, Atlanta, Georgia,
2017
, IEPC Paper No. 2017-228, and references herein.
6.
J.-P.
Boeuf
, “
Tutorial: Physics and modeling of Hall thrusters
,”
J. Appl. Phys.
121
,
011101
(
2017
).
7.
V.
Zhurin
,
H.
Kaufmann
, and
R.
Robinson
, “
Physics of closed drift thrusters
,”
Plasma Sources Sci. Technol.
8
,
R1
R20
(
1999
).
8.
N.
Gascon
,
M.
Dudeck
, and
S.
Barral
, “
Wall material effects in stationary plasma thrusters. I. Parametric studies of an SPT-100
,”
Phys. Plasmas
10
,
4123
4136
(
2003
).
9.
J. C.
Adam
,
A.
Héron
, and
G.
Laval
, “
Study of stationary plasma thrusters using two-dimensional fully kinetic simulations
,”
Phys. Plasmas
11
,
295
(
2004
).
10.
A.
Héron
and
J. C.
Adam
, “
Anomalous conductivity in Hall thrusters: Effects of the non-linear coupling of the electron cyclotron drift instability with secondary electron emission of the walls
,”
Phys. Plasmas
20
,
082313
(
2013
).
11.
S.
Mazouffre
,
G.
Bourgeois
,
K.
Dannenmayer
, and
A.
Lejeune
, “
Ionization and acceleration processes in a small, variable channel width, permanent magnet Hall thruster
,”
J. Phys. D: Appl. Phys.
45
,
185203
(
2012
).
12.
L.
Grimaud
and
S.
Mazouffre
, “
Conducting wall Hall thrusters in magnetic shielding and standard configurations
,”
J. Appl. Phys.
122
,
033305
(
2017
).
13.
L.
Grimaud
,
S.
Mazouffre
, and
C.
Boniface
, “
Performance comparison between standard and magnetically shielded 200 W Hall thrusters with BN-SiO2 and graphite channel walls
,” in
Proceedings of the 35th International Electric Propulsion Conference
, Atlanta, Georgia,
2017
, Paper No. IEPC-2017-172.
14.
V. Yu.
Fedotov
,
A. A.
Ivanov
,
G.
Guerrini
,
A. N.
Vesselovzorov
, and
M.
Bacal
, “
On the electron energy distribution function in a Hall-type thruster
,”
Phys. Plasmas
6
,
4360
(
1999
).
15.
B.
Beal
,
L.
Johnson
,
D.
Brown
,
J.
Blakely
, and
D.
Bromaghim
, “
Improved analysis techniques for cylindrical and spherical double probes
,”
Rev. Sci. Instrum.
83
,
073506
(
2012
).
16.
B. E.
Beal
,
A. D.
Gallimore
,
J. M.
Haas
, and
W. A.
Hargus
, “
Plasma properties in the plume of a Hall thruster cluster
,”
J. Propul. Power
20
,
985
(
2004
).
17.
A. W.
Smith
and
M. A.
Cappelli
, “
Time and space-correlated plasma potential measurements in the near field of a coaxial Hall plasma discharge
,”
Phys. Plasmas
16
,
073504
(
2009
).
18.
K.
Dannenmayer
and
S.
Mazouffre
, “
Compact high-speed reciprocating probe system for measurements in a Hall thruster
,”
Rev. Sci. Instrum.
83
,
123503
(
2012
).
19.
R. B.
Lobbia
and
A. D.
Gallimore
, “
High-speed dual Langmuir probe
,”
Rev. Sci. Instrum.
81
,
073503
(
2010
).
20.
F.
Taccogna
,
R.
Schneider
,
S.
Longo
, and
M.
Capitelli
, “
Kinetic simulations of a plasma thruster
,”
Plasma Sources Sci. Technol.
17
,
024003
(
2008
).
21.
V. A.
Godyak
,
R. B.
Piejak
, and
B. M.
Alexandrovich
, “
Measurements of electron energy distribution in low pressure RF discharges
,”
Plasma Sources Sci. Technol.
1
,
36
(
1992
).
22.
K.
Dannenmayer
,
P.
Kudrna
,
M.
Tichy
, and
S.
Mazouffre
, “
Time-resolved measurement of plasma parameters in the far-field plume of a low-power Hall effect thruster
,”
Plasma Sources Sci. Technol.
21
,
055020
(
2012
).
23.
T.
Lafleur
,
F.
Cannat
,
J.
Jarrige
,
P. Q.
Elias
, and
D.
Packan
, “
Electron dynamics and ion acceleration in expanding-plasma thrusters
,”
Plasma Sources Sci. Technol.
24
,
065013
(
2015
).
24.
J. P.
Boeuf
and
L.
Garrigues
, “
Low frequency oscillations in a stationary plasma thruster
,”
J. Appl. Phys.
84
,
3541
(
1998
).
25.
J.
Vaudolon
and
S.
Mazouffre
, “
Observation of high-frequency ion instabilities in a cross-field plasma
,”
Plasma Sources Sci. Technol.
24
,
032003
(
2015
).
26.
S.
Klagge
, “
Space- and direction-resolved Langmuir probe diagnostic in RF planar discharges
,”
Plasma Chem. Plasma Process.
12
,
103
(
1992
).
27.
L.
Grimaud
,
A.
Pétin
,
J.
Vaudolon
, and
S.
Mazouffre
, “
Perturbations induced by electrostatic probe in the discharge of Hall thrusters
,”
Rev. Sci. Instrum.
87
,
043506
(
2016
).
28.
S.
Klagge
and
M.
Maas
, “
The influence of the fluctuation amplitude on the probe characteristic
,”
Beitr. Plasmaphys.
23
,
355
(
1983
).
29.
J. E.
Allen
,
R. L. F.
Boyd
, and
P.
Reynolds
, “
The collection of positive ions by a probe immersed in a plasma
,”
Proc. Phys. Soc., London, Sect. B
70
,
297
(
1957
).
30.
J.
Vaudolon
,
B.
Khiar
, and
S.
Mazouffre
, “
Time evolution of the electric field in a Hall thruster
,”
Plasma Sources Sci. Technol.
23
,
022002
(
2014
).
31.
S.
Klagge
and
M.
Tichý
, “
A contribution to the assessment of the influence of collisions on the measurements with Langmuir probes in the thick sheath working regime
,”
Czech. J. Phys. B
35
,
988
(
1985
).
32.
E.
Passoth
,
P.
Kudrna
,
C.
Csambal
,
J. F.
Behnke
,
M.
Tichý
, and
V.
Helbig
, “
An experimental study of plasma density determination by a cylindrical Langmuir probe at different pressures and magnetic fields in a cylindrical magnetron discharge in heavy rare gases
,”
J. Phys. D: Appl. Phys.
30
,
1763
(
1997
).
33.
V.
Vahedi
and
M.
Surendra
, “
A Monte Carlo collision model for the particle-in-cell method: Applications to argon and oxygen discharges
,”
Comput. Phys. Commun.
87
,
179
(
1995
).
34.
H. R.
Skullerud
, “
The stochastic computer simulation of ion motion in a gas subjected to a constant electric field
,”
J. Phys. D: Appl. Phys.
1
,
1567
(
1968
).
35.
J. P.
Boris
, “
Relativistic plasma simulation-optimization of a hybrid code
,” in
Proceedings of 4th Conference on Numerical Simulation of Plasmas (Naval Res. Lab.)
(
1970
), pp.
3
67
.
36.
M.
Horký
,
W. J.
Miloch
, and
V. A.
Delong
, “
Numerical heating of electrons in particle-in-cell simulations of fully magnetized plasmas
,”
Phys. Rev. E
95
,
043302
(
2017
).
37.
D.
Block
and
W. J.
Miloch
, “
Charging of multiple grains in subsonic and supersonic plasma flows
,”
Plasma Phys. Controlled Fusion
57
,
014019
(
2015
).
38.
W. J.
Miloch
, “
Simulations of several finite-sized objects in plasma
,”
Procedia Comput. Sci.
51
,
1282
1291
(
2015
).
39.
W. J.
Miloch
,
M.
Kroll
, and
D.
Block
, “
Charging and dynamics of a dust grain in the wakefield of other grain
,”
Phys. Plasmas
17
,
103703
(
2010
).
40.
A. L.
Ortega
and
I. G.
Mikellides
, “
The importance of the cathode plume and its interactions with the ion beam in numerical simulations of Hall thrusters
,”
Phys. Plasmas
23
,
043515
(
2016
).
41.
M.
Martinez-Sanchez
,
J.
Navarro-Cavallé
, and
E.
Ahedo
, “
Electron cooling and finite potential drop in a magnetized plasma expansion
,”
Phys. Plasmas
22
,
053501
(
2015
).
42.
I. P.
Shkarofsky
,
T. W.
Johnston
, and
M. P.
Bachynski
,
The Particle Kinetics of Plasmas
, 1st ed. (
Addison-Wesley Pub. Co.
,
1966
).
43.
M.
Cercek
,
G.
Filipic
,
T.
Gyergyek
, and
J.
Kovacic
, “
Floating potentials in two-electron temperature plasma with two species of positive ions: Kinetic model and PIC simulation
,”
Contrib. Plasma Phys.
50
,
909
(
2010
).
44.
J.
Vaudolon
, “
Electric field determination and magnetic topology optimization in Hall thrusters
,” Ph.D. thesis,
Université d'Orléans
,
2015
.
45.
R. W.
Boswell
,
K.
Takahashi
,
C.
Charles
, and
I. D.
Kaganovich
, “
Non-local electron energy probability function in a plasma expanding along a magnetic nozzle
,”
Front. Phys.
3
,
14
(
2015
).
46.
S. W.
Qing
,
H.
Li
,
X. G.
Wang
,
M. J.
Song
, and
D. R.
Yu
, “
Effect of anisotropic non-Maxwellian electron distribution function on plasma-wall interaction in Hall thrusters
,”
Europhys. Lett.
100
,
35002
(
2012
).
47.
F.
Zhang
,
Y.
Ding
,
H.
Li
,
X.
Wu
, and
D.
Yu
, “
Effect of anisotropy of electron velocity distribution function on dynamic characteristics of sheath in Hall thrusters
,”
Phys. Plasmas
18
,
103512
(
2011
).
48.
K.
Dannenmayer
,
P.
Kudrna
,
M.
Tichy
, and
S.
Mazouffre
, “
Time-resolved measurements of plasma properties using electrostatic probes in the cross-field discharge of a Hall effect thruster
,”
Contrib. Plasma Phys.
53
,
63
(
2013
).
49.
S.
Tsikata
,
N.
Lemoine
,
V.
Pisarev
, and
D.
Grésillon
, “
Dispersion relations of electron density fluctuations in a Hall thruster plasma, observed by collective light scattering
,”
Phys. Plasmas
16
,
033506
(
2009
).
50.
G.
Guerrini
,
C.
Michaut
,
M.
Bacal
,
A. N.
Vesselovzorov
, and
A. A.
Pogorelov
, “
An intense Hall-type ion source for satellite propulsion
,”
Rev. Sci. Instrum.
69
,
804
(
1998
).
You do not currently have access to this content.