The E × B Electron Drift Instability (E × B EDI), also called Electron Cyclotron Drift Instability, has been observed in recent particle simulations of Hall thrusters and is a possible candidate to explain anomalous electron transport across the magnetic field in these devices. This instability is characterized by the development of an azimuthal wave with wavelength in the mm range and velocity on the order of the ion acoustic velocity, which enhances electron transport across the magnetic field. In this paper, we study the development and convection of the E × B EDI in the acceleration and near plume regions of a Hall thruster using a simplified 2D axial-azimuthal Particle-In-Cell simulation. The simulation is collisionless and the ionization profile is not-self-consistent but rather is given as an input parameter of the model. The aim is to study the development and properties of the instability for different values of the ionization rate (i.e., of the total ion production rate or current) and to compare the results with the theory. An important result is that the wavelength of the simulated azimuthal wave scales as the electron Debye length and that its frequency is on the order of the ion plasma frequency. This is consistent with the theory predicting destruction of electron cyclotron resonance of the E × B EDI in the non-linear regime resulting in the transition to an ion acoustic instability. The simulations also show that for plasma densities smaller than under nominal conditions of Hall thrusters the field fluctuations induced by the E × B EDI are no longer sufficient to significantly enhance electron transport across the magnetic field, and transit time instabilities develop in the axial direction. The conditions and results of the simulations are described in detail in this paper and they can serve as benchmarks for comparisons between different simulation codes. Such benchmarks would be very useful to study the role of numerical noise (numerical noise can also be responsible to the destruction of electron cyclotron resonance) or the influence of the period of the azimuthal domain, as well as to reach a better and consensual understanding of the physics.

1.
D. M.
Goebel
and
I.
Katz
,
Fundamentals of Electric Propulsion: Ion and Hall Thrusters
(
Wiley
,
2008
).
2.
J.-P.
Boeuf
, “
Tutorial: Physics and modeling of Hall thrusters
,”
J. Appl. Phys.
121
,
011101
(
2017
).
3.
V. V.
Zhurin
,
H. R.
Kaufman
, and
R. S.
Robinson
, “
Physics of closed drift thrusters
,”
Plasma Sources Sci. Technol.
8
,
R1
(
1999
).
4.
J. C.
Adam
,
A.
Héron
, and
G.
Laval
, “
Study of stationary plasma thrusters using two-dimensional fully kinetic simulations
,”
Phys. Plasmas
11
,
295
(
2004
).
5.
J. C.
Adam
,
J. P.
Boeuf
,
N.
Dubuit
,
M.
Dudeck
,
L.
Garrigues
,
D.
Gresillon
,
A.
Heron
,
G. J. M.
Hagelaar
,
V.
Kulaev
,
N.
Lemoine
,
S.
Mazouffre
,
J.
Perez Luna
,
V.
Pisarev
, and
S.
Tsikata
,
Plasma Phys. Controlled Fusion
50
,
124041
(
2008
).
6.
J.
Cavalier
,
N.
Lemoine
,
G.
Bonhomme
,
S.
Tsikata
,
C.
Honore
, and
D.
Gresillon
, “
Hall thruster plasma fluctuations identified as the E x B electron drift instability: Modeling and fitting on experimental data
,”
Phys. Plasmas
20
,
082107
(
2013
).
7.
T.
Lafleur
,
S. D.
Baalrud
, and
P.
Chabert
, “
Theory for the anomalous electron transport in Hall effect thrusters. II. Kinetic model
,”
Phys. Plasmas
23
,
053503
(
2016
).
8.
S.
Tsikata
,
N.
Lemoine
,
V.
Pisarev
, and
D. M.
Gresillon
, “
Dispersion relations of electron density fluctuations in a Hall thruster plasma, observed by collective light scattering
,”
Phys. Plasmas
16
,
033506
(
2009
).
9.
A.
Ducrocq
,
J. C.
Adam
,
A.
Héron
, and
G.
Laval
, “
High-frequency electron drift instability in the cross-field configuration of Hall thrusters
,”
Phys. Plasmas
13
,
102111
(
2006
).
10.
G. V.
Gordeev
,
Zh. Eksp. Teor. Fiz.
23
,
660
(
1952
)
G. V.
Gordeev
, [
Sov. Phys.-JETP
6
,
660
(
1952
)].
11.
P. S.
Gary
and
J. J.
Sanderson
, “
Longitudinal waves in a perpendicular collisionless plasma shock—I. Cold ions
,”
J. Plasma Phys.
4
,
739
(
1970
).
12.
D.
Forslund
,
R.
Morse
, and
C.
Nielson
, “
Electron cyclotron drift instability
,”
Phys. Rev. Lett.
25
,
1266
(
1970
).
13.
D.
Forslund
, “
Electron cyclotron drift instability and turbulence
,”
Phys. Fluids
15
,
1303
(
1972
).
14.
M.
Lampe
,
W. M.
Manheimer
,
J. B.
McBride
,
J. H.
Orens
,
R.
Shanny
, and
R. N.
Sudan
, “
Nonlinear development of the beam-cyclotron instability
,”
Phys. Rev. Lett.
26
,
1221
(
1971
).
15.
M.
Lampe
,
W. M.
Manheimer
,
J. B.
McBride
,
J. H.
Orens
,
K.
Papadopoulos
,
R.
Shanny
, and
R. N.
Sudan
, “
Theory and simulation of the beam cyclotron instability
,”
Phys. Fluids
15
,
662
(
1972
).
16.
J. P.
Boeuf
, “
Rotating structures in low temperature magnetized plasmas—Insight from particle simulations
,”
Front. Plasma Phys.
2
,
74
(
2014
).
17.
T.
Lafleur
,
S. D.
Baalrud
, and
P.
Chabert
, “
Theory for the anomalous electron transport in Hall effect thrusters. I. Insights from particle-in-cell simulations
,”
Phys. Plasmas
23
,
053502
(
2016
).
18.
T.
Lafleur
and
P.
Chabert
, “
The role of instability-enhanced friction on ‘anomalous’ electron and ion transport in Hall-effect thrusters
,”
Plasma Sources Sci. Technol.
27
,
015003
(
2017
).
19.
J. P.
Boeuf
, in
Proceedings of the 35th International Electric Propulsion Conference
, Atlanta, GA (
2017
).
20.
A. W.
Degeling
and
R. W.
Boswell
, “
Modeling ionization by helicon waves
,”
Phys. Plasmas
4
,
2748
(
1997
).
21.
S.
Janhunen
,
A.
Smolyakov
,
O.
Chapurin
,
D.
Sydorenko
,
I.
Kaganovich
, and
Y.
Raitses
, “
Nonlinear structures and anomalous transport in partially magnetized E × B plasmas
,”
Phys. Plasmas
25
,
011608
(
2018
).
22.
J.
Boeuf
and
L.
Garrigues
, “
Low frequency oscillations in a stationary plasma thruster
,”
J. Appl. Phys.
84
,
3541
(
1998
).
23.
L.
Dubois
,
F.
Gaboriau
,
L.
Liard
,
D.
Harribey
,
C.
Henaux
,
S.
Mazouffre
, and
C.
Boniface
, “
Ion acceleration through a magnetic barrier—Toward an optimized double-stage Hall thruster concept, IEPC-2017-215
,” in Proceedings of the
35th International Electric Propulsion Conference
, Atlanta, GA (
2017
).
24.
C. K.
Birdsall
, “
Particle-In-Cell charged-particle simulations plus Monte Carlo Collisions with neutral atoms, PIC-MCC
,”
IEEE Trans. Plasma Sci.
19
,
65
(
1991
).
25.
J. P.
Boeuf
,
B.
Chaudhury
, and
L.
Garrigues
, “
Physics of a magnetic filter for negative ion sources. I. Collisional transport across the filter in an ideal, 1D filter
,”
Phys. Plasmas
19
,
113509
(
2012
).
26.
J. P.
Boeuf
,
J.
Claustre
,
B.
Chaudhury
, and
G.
Fubiani
, “
Physics of a magnetic filter for negative ion sources. II. E × B drift through the filter in a real geometry
,”
Phys. Plasmas
19
,
113510
(
2012
).
27.
J. P.
Boeuf
and
B.
Chaudhury
, “
Rotating instability in low-temperature magnetized plasmas
,”
Phys. Rev. Lett.
111
,
155005
(
2013
).
28.
J. P.
Boeuf
,
G.
Fubiani
, and
L.
Garrigues
, “
Issues in the understanding of negative ion extraction for fusion
,”
Plasma Sources Sci. Technol.
25
,
045010
(
2016
).
29.
L.
Garrigues
,
G.
Fubiani
, and
J. P.
Boeuf
, “
Negative ion extraction via particle simulation for fusion: Critical assessment of recent contributions
,”
Nucl. Fusion
57
,
014003
(
2017
).
30.
L.
Garrigues
,
G.
Fubiani
, and
J. P.
Boeuf
, “
Appropriate use of the particle-in-cell method in low temperature plasmas: Application to the simulation of negative ion extraction
,”
J. Appl. Phys.
120
,
213303
(
2016
).
31.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics via Computer Simulation
(
Taylor & Francis, Ltd.
,
2004
).
32.
M. K.
Scharfe
,
N.
Gascon
, and
M. A.
Cappelli
, “
Comparison of hybrid Hall thruster model to experimental measurements
,”
Phys. Plasmas
13
,
083505
(
2006
).
33.
N.
Meezan
,
W.
Hargus
, and
M.
Cappelli
, “
Anomalous electron mobility in a coaxial Hall discharge plasma
,”
Phys. Rev. E
63
,
026410
(
2001
).
34.
I.
Katz
,
I. G.
Mikellides
,
A. J.
Jorns
, and
A.
Lopez-Ortega
, EPC-2015-249, in Proceedings of the
34th International Electric Propulsion Conference
, Kobe, Japan (
2015
).
35.
Y. B.
Esipchuck
and
G.
Tilinin
,
Zh. Tekh. Fiz.
46
,
718
729
(
1976
)
Y. B.
Esipchuk
and
G.
Tilinin
, [
Sov. Phys. Tech. Phys.
21
,
417
(
1976
)].
36.
Y. B.
Esipchuck
,
A. I.
Morozov
,
G.
Tilinin
, and
A.
Trofinov
,
Sov. Phys. Tech. Phys.
18
,
928
(
1974
).
37.
S.
Barral
,
K.
Makowski
,
Z.
Peradzyński
, and
M.
Dudeck
, “
Transit-time instability in Hall thrusters
,”
Phys. Plasmas
12
,
073504
(
2005
).
38.
E.
Fernandez
,
M. K.
Scharfe
,
C. A.
Thomas
,
N.
Gascon
, and
M. A.
Cappelli
, “
Growth of resistive instabilities in E × B plasma discharge simulations
,”
Phys. Plasmas
15
,
012102
(
2008
).
39.
G. J. M.
Hagelaar
,
J.
Bareilles
,
L.
Garrigues
, and
J. P.
Boeuf
, “
Role of anomalous electron transport in a stationary plasma thruster simulation
,”
J. Appl. Phys.
93
,
67
(
2003
).
You do not currently have access to this content.