Symplectic integrators offer many benefits for numerically approximating solutions to Hamiltonian differential equations, including bounded energy error and the preservation of invariant sets. Two important Hamiltonian systems encountered in plasma physics—the flow of magnetic field lines and the guiding center motion of magnetized charged particles—resist symplectic integration by conventional means because the dynamics are most naturally formulated in non-canonical coordinates. New algorithms were recently developed using the variational integration formalism; however, those integrators were found to admit parasitic mode instabilities due to their multistep character. This work eliminates the multistep character, and therefore the parasitic mode instabilities via an adaptation of the variational integration formalism that we deem “degenerate variational integration.” Both the magnetic field line and guiding center Lagrangians are degenerate in the sense that the resultant Euler-Lagrange equations are systems of first-order ordinary differential equations. We show that retaining the same degree of degeneracy when constructing discrete Lagrangians yields one-step variational integrators preserving a non-canonical symplectic structure. Numerical examples demonstrate the benefits of the new algorithms, including superior stability relative to the existing variational integrators for these systems and superior qualitative behavior relative to non-conservative algorithms.

1.
R. G.
Littlejohn
,
J. Plasma Phys.
29
,
111
(
1983
).
2.
J. R.
Cary
and
R. G.
Littlejohn
,
Ann. Phys.
151
,
1
(
1983
).
3.
J. R.
Cary
and
A. J.
Brizard
,
Rev. Mod. Phys.
81
,
693
(
2009
).
4.
L. D.
Landau
and
E. M.
Lifshitz
,
Mechanics
(
Pergamon Press
,
1969
).
5.
A. J.
Lichtenberg
and
M. A.
Lieberman
,
Regular and Stochastic Motion
(
Springer Science + Business Media
,
1983
).
6.
J. E.
Marsden
and
T. S.
Ratiu
,
Introduction to Mechanics and Symmetry
(
Springer Science and Business Media
,
1999
).
7.
E.
Hairer
,
C.
Lubich
, and
G.
Wanner
,
Geometric Numerical Integration
(
Springer
,
2006
), pp.
179
236
.
8.
R. I.
McLachlan
and
G. R. W.
Quispel
,
J. Phys. A: Math. Gen.
39
,
5251
(
2006
).
9.
E.
Forest
and
R. D.
Ruth
,
Physica D
43
,
105
(
1990
).
10.
H.
Qin
and
X.
Guan
,
Phys. Rev. Lett.
100
,
035006
(
2008
).
11.
H.
Qin
,
X.
Guan
, and
W. M.
Tang
,
Phys. Plasmas
16
,
042510
(
2009
).
12.
J.
Squire
,
H.
Qin
, and
W. M.
Tang
,
Phys. Plasmas
19
,
084501
(
2012
).
13.
E.
Evstatiev
and
B.
Shadwick
,
J. Comput. Phys.
245
,
376
(
2013
).
14.
B. A.
Shadwick
,
A. B.
Stamm
, and
E. G.
Evstatiev
,
Phys. Plasmas
21
,
055708
(
2014
).
15.
A. B.
Stamm
, “
Variational formulation of macro-particle algorithms for studying electromagnetic plasmas
,” Ph.D. thesis (
University of Nebraska
, Lincoln,
2015
).
16.
H.
Qin
,
J.
Liu
,
J.
Xiao
,
R.
Zhang
,
Y.
He
,
Y.
Sun
,
J.
Burby
,
C.
Ellison
, and
Y.
Zhou
,
Nucl. Fusion
56
,
014001
(
2016
).
17.
G.
Darboux
,
Bull. Sci. Math.
6
,
14
(
1882
).
18.
R. B.
White
and
M. S.
Chance
,
Phys. Fluids
27
,
2455
(
1984
).
19.
R.
White
and
L. E.
Zakharov
,
Phys. Plasmas
10
,
573
(
2003
).
20.
S.
Zhang
,
Y.
Jia
, and
Q.
Sun
,
J. Comput. Phys.
282
,
43
(
2015
).
21.
B.
Karasözen
,
Math. Comput. Modell.
40
,
1225
(
2004
).
22.
Note that methods have been developed for Lie-Poisson systems
[
G.
Zhong
and
J. E.
Marsden
, “Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators,”
Phys. Lett. A
133
,
134
139
(
1988
)
and
P. J.
Channell
and
J. C.
Scovel
, “Integrators for Lie-Poisson dynamical systems,”
Phys. D: Nonlinear Phenom.
50
,
80
88
(
1991
)]; however, the magnetic field line and guiding center Poisson brackets are not Lie-Poisson brackets.
23.
J. L.
Velasco
,
A.
Bustos
,
F.
Castejon
,
L. A.
Fernandez
,
V.
Martin-Mayor
, and
A.
Tarancon
,
Comput. Phys. Commun.
183
,
1877
(
2012
).
24.
G. J.
Kramer
,
R. V.
Budny
,
A.
Bortolon
,
E. D.
Fredrickson
,
G. Y.
Fu
,
W. W.
Heidbrink
,
R.
Nazikian
,
E.
Valeo
, and
M. A. V.
Zeeland
,
Plasma Phys. Controlled Fusion
55
,
025013
(
2013
).
25.
D.
Pfefferlé
,
J. P.
Graves
,
W. A.
Cooper
,
C.
Misev
,
I. T.
Chapman
,
M. T
urnyanskiy
, and
S.
Sangaroon
,
Nucl. Fusion
54
,
064020
(
2014
).
26.
E.
Hirvijoki
,
O.
Asunta
,
T.
Koskela
,
T.
Kurki-Suonio
,
J.
Meittunen
,
S.
Sipilä
,
A.
Snicker
, and
S.
Äkäslompolo
,
Comput. Phys. Commun.
185
,
1310
(
2014
).
27.
E.
Hirvijoki
,
T.
Kurki-Suonio
,
S.
Äkäslompolo
,
J.
Varje
,
T.
Koskela
, and
J.
Meittunen
,
J. Plasma Phys.
81
,
435810301
(
2015
).
28.
J.
Li
,
H.
Qin
,
Z.
Pu
,
L.
Xie
, and
S.
Fu
,
Phys. Plasmas
18
,
052902
(
2011
).
29.
M.
Kraus
, “
Variational integrators in plasma physics
,” Ph.D. thesis (
Technische Universität München
,
2013
).
30.
J. E.
Marsden
and
M.
West
,
Acta Numer.
10
,
357
514
(
2001
).
31.
J.
Squire
,
H.
Qin
, and
W. M.
Tang
,
Phys. Plasmas
19
,
052501
(
2012
).
32.
C. L.
Ellison
,
J. M.
Finn
,
H.
Qin
, and
W. M.
Tang
,
Plasma Phys. Controlled Fusion
57
,
054007
(
2015
).
33.
C. L.
Ellison
, “
Development of multistep and degenerate variational integrators for applications in plasma physics
,” Ph.D. thesis (
Princeton University
,
2016
).
34.
F.
Bashforth
and
J. C.
Adams
,
An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid, with an Explanation of the Method of Integration Employed in Constructing the Tables Which Give the Theoretical Forms of Such Drops
(
Cambridge University Press
,
1883
).
35.
G.
Dahlquist
,
Math. Scand.
4
,
33
(
1956
).
36.
E.
Hairer
,
C.
Lubich
, and
G.
Wanner
,
Geometric Numerical Integration
(
Springer
,
2006
), pp.
567
616
.
37.
H.
Goldstein
,
C.
Poole
, and
J.
Safko
,
Classical Mechanics
(
Addison Wesley
,
2001
).
38.
C. W.
Rowley
and
J. E.
Marsden
, in
Proceedings of the 41st IEEE Conference on Decision and Control
(
2002
), Vol.
2
, p.
1521
.
39.
S.
Ober-Blöbaum
,
M.
Tao
,
M.
Cheng
,
H.
Owhadi
, and
J. E.
Marsden
,
J. Comput. Phys.
242
,
498
(
2013
).
40.
T.
Tyranowski
and
M.
Desbrun
, preprint arXiv:1401.7904 (
2014
).
41.
J. W.
Burby
and
C. L.
Ellison
,
Phys. Plasmas
24
,
110703
(
2017
).
42.
M.
Kraus
, “
Projected variational integrators for degenerate Lagrangian systems
,” preprint arXiv:1708.07356 [math.NA] (
2017
).
43.
R. D.
Ruth
,
IEEE Trans. Nucl. Sci.
NS-30
,
2669
(
1983
).
44.
P. J.
Channell
and
C.
Scovel
,
Nonlinearity
3
,
231
(
1990
).
45.
J. M.
Sanz-Serna
,
BIT
28
,
877
(
1988
).
46.
M.
Leok
and
J.
Zhang
,
IMA J. Numer. Anal.
31
,
1497
(
2011
).
47.
V. I.
Arnold
,
Mathematical Methods of Classical Mechanics
(
Springer
,
1989
), p.
243
.
48.
H.
Goldstein
,
C.
Poole
, and
J.
Safko
,
Classical Mechanics
(
Addison Wesley
,
2001
), Chap. 8.5, p.
353
.
49.

The fixed endpoint condition introduces technical nuance on the existence of a path connecting such endpoints, especially for phase-space and degenerate Lagrangians. See, e.g., Ref. 40 for technical details.

50.

Fermat's principle provides one interesting example of a degenerate Lagrangian that is not a phase-space Lagrangian: L=n(x,y)ẋ2+ẏ2dt, where n is the index of refraction and we have set c = 1. This is a special case of geodesics.

51.
D. D.
Holm
,
T.
Schmah
, and
C.
Stoica
,
Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions
(
Oxford University Press
,
2009
).
52.
T.
Frankel
,
The Geometry of Physics: An Introduction
, 3rd ed. (
Cambridge University Press
,
2012
).
53.
E.
Hairer
,
Numerische Math.
84
,
199
(
1999
).
54.
E.
Hairer
,
C.
Lubich
, and
G.
Wanner
,
Geometric Numerical Integration
(
Springer
,
2006
), pp.
3
4
.
55.
E.
Hairer
,
C.
Lubich
, and
G.
Wanner
,
Geometric Numerical Integration
(
Springer
,
2006
), p.
42
.
56.
S.
Blanes
,
F.
Casas
, and
A.
Murua
,
SIAM J. Numer. Anal.
42
,
531
(
2004
).
57.
Y.
He
,
Y.
Sun
,
R.
Zhang
,
Y.
Wang
,
J.
Liu
, and
H.
Qin
,
Phys. Plasmas
23
,
092109
(
2016
).
58.
T. G.
Northrop
,
Rev. Geophys.
1
,
283
, (
1963
).
59.
H.
Yoshida
,
Phys. Lett. A
150
,
262
(
1990
).
60.
A.
Friedman
and
S. P.
Auerbach
,
J. Comput. Phys.
93
,
171
(
1991
).
61.
Recall that B is normalized by e/mc, so this field is not 255.6 T.
62.
Y.
He
,
Y.
Sun
,
J.
Liu
, and
H.
Qin
,
J. Comput. Phys.
281
,
135
(
2015
).
63.
Y.
Wang
,
J.
Liu
,
H.
Qin
,
Z.
Yu
, and
Y.
Yao
,
Comput. Phys. Commun.
220
,
212
(
2017
).
64.
M.
Kraus
,
K.
Kormann
,
P.
Morrison
, and
E.
Sonnendrcker
,
J. Plasma Phys.
83
,
905830401
(
2017
).
You do not currently have access to this content.