We investigate the target normal sheath acceleration of protons in thin aluminum targets irradiated at a relativistic intensity by two time-separated ultrashort (35 fs) laser pulses. When the full-energy laser pulse is temporally split into two identical half-energy pulses, and using target thicknesses of 3 and 6 μm, we observe experimentally that the second half-pulse boosts the maximum energy and charge of the proton beam produced by the first half-pulse for time delays below ∼0.6–1 ps. Using two-dimensional particle-in-cell simulations, we examine the variation of the proton energy spectra with respect to the time-delay between the two pulses. We demonstrate that the expansion of the target front surface caused by the first pulse significantly enhances the hot-electron generation by the second pulse arriving after a few hundreds of fs time delay. This enhancement, however, does not suffice to further accelerate the fastest protons driven by the first pulse once three-dimensional quenching effects have set in. This implies a limit to the maximum time delay that leads to proton energy enhancement, which we theoretically determine.

1.
T. E.
Cowan
,
J.
Fuchs
,
H.
Ruhl
,
A.
Kemp
,
P.
Audebert
,
M.
Roth
,
R.
Stephens
,
I.
Barton
,
A.
Blazevic
,
E.
Brambrink
,
J.
Cobble
,
J.
Fernández
,
J.-C.
Gauthier
,
M.
Geissel
,
M.
Hegelich
,
J.
Kaae
,
S.
Karsch
,
G. P.
Le Sage
,
S.
Letzring
,
M.
Manclossi
,
S.
Meyroneinc
,
A.
Newkirk
,
H.
Pépin
, and
N.
Renard-LeGalloudec
, “
Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator
,”
Phys. Rev. Lett.
92
,
204801
(
2004
).
2.
M.
Borghesi
,
A. J.
Mackinnon
,
D. H.
Campbell
,
D. G.
Hicks
,
S.
Kar
,
P. K.
Patel
,
D.
Price
,
L.
Romagnani
,
A.
Schiavi
, and
O.
Willi
, “
Multi-MeV proton source investigations in ultraintense laser-foil interactions
,”
Phys. Rev. Lett.
92
,
055003
(
2004
).
3.
E.
Brambrink
,
J.
Schreiber
,
T.
Schlegel
,
P.
Audebert
,
J.
Cobble
,
J.
Fuchs
,
M.
Hegelich
, and
M.
Roth
, “
Transverse characteristics of short-pulse laser-produced ion beams: A study of the acceleration dynamics
,”
Phys. Rev. Lett.
96
,
154801
(
2006
).
4.
B.
Dromey
,
M.
Coughlan
,
L.
Senje
,
M.
Taylor
,
S.
Kuschel
,
B.
Villagomez-Bernabe
,
R.
Stefanuik
,
G.
Nersisyan
,
L.
Stella
,
J.
Kohanoff
,
M.
Borghesi
,
F.
Currell
,
D.
Riley
,
D.
Jung
,
C.-G.
Wahlström
,
C. L. S.
Lewis
, and
M.
Zepf
, “
Picosecond metrology of laser-driven proton bursts
,”
Nat. Commun.
7
,
10642
(
2016
).
5.
H.
Daido
,
M.
Nishiuchi
, and
A. S.
Pirozhkov
, “
Review of laser-driven ion sources and their applications
,”
Rep. Prog. Phys.
75
,
056401
(
2012
).
6.
P. K.
Patel
,
A.
Mackinnon
,
M. H.
Key
,
T. E.
Cowan
,
M. E.
Foord
,
M.
Allen
,
D. F.
Price
,
H.
Ruhl
,
P. T.
Springer
, and
R.
Stephens
, “
Isochoric heating of solid-density matter with an ultrafast proton beam
,”
Phys. Rev. Lett.
91
,
125004
(
2003
).
7.
P.
McKenna
,
K. W. D.
Ledingham
,
T.
McCanny
,
R. P.
Singhal
,
I.
Spencer
,
M. I. K.
Santala
,
F. N.
Beg
,
K.
Krushelnick
,
M.
Tatarakis
,
M. S.
Wei
,
E. L.
Clark
,
R. J.
Clarke
,
K. L.
Lancaster
,
P. A.
Norreys
,
K.
Spohr
,
R.
Chapman
, and
M.
Zepf
, “
Demonstration of fusion-evaporation and direct-interaction nuclear reactions using high-intensity laser-plasma-accelerated ion beams
,”
Phys. Rev. Lett.
91
,
075006
(
2003
).
8.
S.
Fritzler
,
V.
Malka
,
G.
Grillon
,
J. P.
Rousseau
,
F.
Burgy
,
E.
Lefebvre
,
E.
d'Humières
,
P.
McKenna
, and
K. W. D.
Ledingham
, “
Proton beams generated with high-intensity lasers: Applications to medical isotope production
,”
Appl. Phys. Lett.
83
,
3039
(
2003
).
9.
P.
McKenna
,
K. W. D.
Ledingham
,
S.
Shimizu
,
J. M.
Yang
,
L.
Robson
,
T.
McCanny
,
J.
Galy
,
J.
Magill
,
R. J.
Clarke
,
D.
Neely
,
P. A.
Norreys
,
R. P.
Singhal
,
K.
Krushelnick
, and
M. S.
Wei
, “
Broad energy spectrum of laser-accelerated protons for spallation-related physics
,”
Phys. Rev. Lett.
94
,
084801
(
2005
).
10.
S. V.
Bulanov
and
V. S.
Khoroshkov
, “
Feasibility of using laser ion accelerators in proton therapy
,”
Plasma Phys. Rep.
28
,
453
456
(
2002
).
11.
S. P.
Hatchett
,
C. G.
Brown
,
T. E.
Cowan
,
E. A.
Henry
,
J. S.
Johnson
,
M. H.
Key
,
J. A.
Koch
,
A. B.
Langdon
,
B. F.
Lasinski
,
R. W.
Lee
,
A. J.
Mackinnon
,
D. M.
Pennington
,
M. D.
Perry
,
T. W.
Phillips
,
M.
Roth
,
T. C.
Sangster
,
M. S.
Singh
,
R. A.
Snavely
,
M. A.
Stoyer
,
S. C.
Wilks
, and
K.
Yasuike
, “
Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets
,”
Phys. Plasmas
7
,
2076
(
2000
).
12.
S. C.
Wilks
,
A. B.
Langdon
,
T. E.
Cowan
,
M.
Roth
,
M.
Singh
,
S.
Hatchett
,
M. H.
Key
,
D.
Pennington
,
A.
MacKinnon
, and
R. A.
Snavely
, “
Energetic proton generation in ultra-intense laser-solid interactions
,”
Phys. Plasmas
8
,
542
(
2001
).
13.
P.
Mora
, “
Plasma expansion into a vacuum
,”
Phys. Rev. Lett.
90
,
185002
(
2003
).
14.
M.
Passoni
,
L.
Bertagna
, and
A.
Zani
, “
Target normal sheath acceleration: Theory, comparison with experiments and future perspectives
,”
New J. Phys.
12
,
045012
(
2010
).
15.
A.
Macchi
,
M.
Borghesi
, and
M.
Passoni
, “
Ion acceleration by superintense laser-plasma interaction
,”
Rev. Mod. Phys.
85
,
751
(
2013
).
16.
R. A.
Snavely
,
M. H.
Key
,
S. P.
Hatchett
,
T. E.
Cowan
,
M.
Roth
,
T. W.
Phillips
,
M. A.
Stoyer
,
E. A.
Henry
,
T. C.
Sangster
,
M. S.
Singh
,
S. C.
Wilks
,
A.
MacKinnon
,
A.
Offenberger
,
D. M.
Pennington
,
K.
Yasuike
,
A. B.
Langdon
,
B. F.
Lasinski
,
J.
Johnson
,
M. D.
Perry
, and
E. M.
Campbell
, “
Intense high-energy proton beams from petawatt-laser irradiation of solids
,”
Phys. Rev. Lett.
85
,
2945
2948
(
2000
).
17.
T.
Ceccotti
,
A.
Lévy
,
H.
Popescu
,
F.
Réau
,
P.
D'Oliveira
,
P.
Monot
,
J. P.
Geindre
,
E.
Lefebvre
, and
P.
Martin
, “
Proton acceleration with high-intensity ultrahigh-contrast laser pulses
,”
Phys. Rev. Lett.
99
,
185002
(
2007
).
18.
J.
Fuchs
,
Y.
Sentoku
,
S.
Karsch
,
J.
Cobble
,
P.
Audebert
,
A.
Kemp
,
A.
Nikroo
,
P.
Antici
,
E.
Brambrink
,
A.
Blazevic
,
E. M.
Campbell
,
J. C.
Fernández
,
J.-C.
Gauthier
,
M.
Geissel
,
M.
Hegelich
,
H.
Pépin
,
H.
Popescu
,
N.
Renard-LeGalloudec
,
M.
Roth
,
J.
Schreiber
,
R.
Stephens
, and
T. E.
Cowan
, “
Comparison of laser ion acceleration from the front and rear surfaces of thin foils
,”
Phys. Rev. Lett.
94
,
045004
(
2005
).
19.
K.
Zeil
,
S. D.
Kraft
,
S.
Bock
,
M.
Bussmann
,
T. E.
Cowan
,
T.
Kluge
,
J.
Metzkes
,
T.
Richter
,
R.
Sauerbrey
, and
U.
Schramm
, “
The scaling of proton energies in ultrashort pulse laser plasma acceleration
,”
New J. Phys.
12
,
045015
(
2010
).
20.
F.
Wagner
,
O.
Deppert
,
C.
Brabetz
,
P.
Fiala
,
A.
Kleinschmidt
,
P.
Poth
,
V. A.
Schanz
,
A.
Tebartz
,
B.
Zielbauer
,
M.
Roth
,
T.
Stöhlker
, and
V.
Bagnoud
, “
Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets
,”
Phys. Rev. Lett.
116
,
205002
(
2016
).
21.
A. P. L.
Robinson
,
D.
Neely
,
P.
McKenna
, and
R. G.
Evans
, “
Spectral control in proton acceleration with multiple laser pulses
,”
Plasma Phys. Controlled Fusion
49
,
373
(
2007
).
22.
K.
Markey
,
P.
McKenna
,
C. M.
Brenner
,
D. C.
Carroll
,
M. M.
Gnther
,
K.
Harres
,
S.
Kar
,
K.
Lancaster
,
F.
Nürnberg
,
M. N.
Quinn
,
A. P. L.
Robinson
,
M.
Roth
,
M.
Zepf
, and
D.
Neely
, “
Spectral enhancement in the double pulse regime of laser proton acceleration
,”
Phys. Rev. Lett.
105
,
195008
(
2010
).
23.
G.
Scott
,
J.
Green
,
V.
Bagnoud
,
C.
Brabetz
,
C.
Brenner
,
D.
Carroll
,
D.
MacLellan
,
A.
Robinson
,
M.
Roth
,
C.
Spindloe
,
F.
Wagner
,
B.
Zielbauer
,
P.
McKenna
, and
D.
Neely
, “
Multi-pulse enhanced laser ion acceleration using plasma half cavity targets
,”
Appl. Phys. Lett.
101
,
024101
(
2012
).
24.
C. M.
Brenner
,
A.
Robinson
,
K.
Markey
,
R.
Scott
,
R.
Gray
,
M.
Rosinski
,
O.
Deppert
,
J.
Badziak
,
D.
Batani
,
J.
Davies
,
S.
Hassan
,
K.
Lancaster
,
K.
Li
,
O.
Musgrave
,
P.
Norreys
,
J.
Pasley
,
M.
Roth
,
H.-P.
Schlenvoigt
,
C.
Spindloe
,
M.
Tatarakis
,
J.
Winstone
,
D.
Wyatt
,
P.
McKenna
, and
D.
Neely
, “
High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets
,”
Appl. Phys. Lett.
104
,
081123
(
2014
).
25.
T. D.
Arber
,
K.
Bennett
,
C. S.
Brady
,
A.
Lawrence-Douglas
,
M. G.
Ramsay
,
N. J.
Sircombe
,
P.
Gillies
,
R. G.
Evans
,
H.
Schmitz
,
A. R.
Bell
, and
C. P.
Ridgers
, “
Contemporary particle-in-cell approach to laser-plasma modelling
,”
Plasma Phys. Controlled Fusion
57
,
113001
(
2015
).
26.
B.
Aurand
,
M.
Hansson
,
L.
Senje
,
K.
Svensson
,
A.
Persson
,
D.
Neely
,
O.
Lundh
, and
C.-G.
Wahlström
, “
A setup for studies of laser-driven proton acceleration at the Lund Laser Centre
,”
Laser Part. Beams
33
,
59
64
(
2015
).
27.
L.
Senje
, “
Detector development, source characterization and novel applications of laser ion acceleration
,” Ph.D. thesis,
Lund University
,
2017
.
28.
J.
Fuchs
,
Y.
Sentoku
,
E.
d'Humières
,
T. E.
Cowan
,
J.
Cobble
,
P.
Audebert
,
A.
Kemp
,
A.
Nikroo
,
P.
Antici
,
E.
Brambrink
,
A.
Blazevic
,
E. M.
Campbell
,
J. C.
Fernández
,
J.-C.
Gauthier
,
M.
Geissel
,
M.
Hegelich
,
S.
Karsch
,
H.
Popescu
,
N.
Renard-LeGalloudec
,
M.
Roth
,
J.
Schreiber
,
R.
Stephens
, and
H.
Pépin
, “
Comparative spectra and efficiencies of ions laser-accelerated forward from the front and rear surfaces of thin solid foils
,”
Phys. Plasmas
14
,
053105
(
2007
).
29.
E.
Lefebvre
and
G.
Bonnaud
, “
Nonlinear electron heating in ultrahigh-intensity-laser-plasma interaction
,”
Phys. Rev. E
55
,
1011
1014
(
1997
).
30.
P.
McKenna
,
D.
Carroll
,
O.
Lundh
,
F.
Nürnberg
,
K.
Markey
,
S.
Bandyopadhyay
,
D.
Batani
,
R.
Evans
,
R.
Jafer
,
S.
Kar
,
D.
Neely
,
D.
Pepler
,
M. N.
Quinn
,
R.
Redaelli
,
M.
Roth
,
C.-G.
Wahlström
,
X. H.
Yuan
, and
M.
Zepf
, “
Effects of front surface plasma expansion on proton acceleration in ultraintense laser irradiation of foil targets
,”
Laser Part. Beams
26
,
591
(
2008
).
31.
R.
Nuter
,
L.
Gremillet
,
P.
Combis
,
M.
Drouin
,
E.
Lefebvre
,
A.
Flacco
, and
V.
Malka
, “
Influence of a preplasma on electron heating and proton acceleration in ultraintense laser-foil interaction
,”
J. Appl. Phys.
104
,
103307
(
2008
).
32.
B. S.
Paradkar
,
M. S.
Wei
,
T.
Yabuuchi
,
R. B.
Stephens
,
M. G.
Haines
,
S. I.
Krasheninnikov
, and
F. N.
Beg
, “
Numerical modeling of fast electron generation in the presence of preformed plasma in laser-matter interaction at relativistic intensities
,”
Phys. Rev. E
83
,
046401
(
2011
).
33.
A. V.
Arefiev
,
A. P. L.
Robinson
, and
V. N.
Khudik
, “
Novel aspects of direct laser acceleration of relativistic electrons
,”
J. Plasma Phys.
81
,
475810404
(
2015
).
34.
T.
Grismayer
and
P.
Mora
, “
Influence of a finite initial ion density gradient on plasma expansion into a vacuum
,”
Phys. Plasmas
13
,
032103
(
2006
).
35.
J.
Fuchs
,
C. A.
Cecchetti
,
M.
Borghesi
,
T.
Grismayer
,
E.
d'Humières
,
P.
Antici
,
S.
Atzeni
,
P.
Mora
,
A.
Pipahl
,
L.
Romagnani
,
A.
Schiavi
,
Y.
Sentoku
,
T.
Toncian
,
P.
Audebert
, and
O.
Willi
, “
Laser-foil acceleration of high-energy protons in small-scale plasma gradients
,”
Phys. Rev. Lett.
99
,
015002
(
2007
).
36.
P.
Mora
, “
Thin-foil expansion into a vacuum
,”
Phys. Rev. E
72
,
056401
(
2005
).
37.
A. V.
Brantov
,
E. A.
Govras
,
V. Y.
Bychenkov
, and
W.
Rozmus
, “
Ion energy scaling under optimum conditions of laser plasma acceleration from solid density targets
,”
Phys. Rev. Spec. Top. - Accel. Beams
18
,
021301
(
2015
).
You do not currently have access to this content.