We consider the nonlinear propagation of electron-acoustic waves in a plasma composed of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution, and stationary ions. The basic nonlinear equations of the above described plasma are re-examined in the cylindrical (spherical) coordinates by employing the reductive perturbation technique. The modified cylindrical (spherical) KdV equation with fractional power nonlinearity is obtained as the evolution equation. Due to the nature of nonlinearity, this evolution equation cannot be reduced to the conventional KdV equation. A new family of closed form analytical approximate solution to the evolution equation and a comparison with numerical solution are presented and the results are depicted in some 2D and 3D figures. The results reveal that both solutions are in good agreement and the method can be used to obtain a new progressive wave solution for such evolution equations. Moreover, the resulting closed form analytical solution allows us to carry out a parametric study to investigate the effect of the physical parameters on the solution behavior of the modified cylindrical (spherical) KdV equation.

1.
B. D.
Fried
and
R. W.
Gould
,
Phys. Fluids
4
,
139
(
1961
).
2.
K.
Watanabe
and
T.
Taniuti
,
Phys. Soc. Jpn.
43
,
1819
(
1977
).
3.
N.
Dubouloz
,
N.
Pottelette
,
M.
Malignre
, and
R. A.
Truemann
,
Geophys. Res. Lett.
18
,
155
, (
1991
).
4.
H.
Abbasi
,
N. L.
Tsintsadze
, and
D. D.
Tskhakaya
,
Phys. Plasma
6
,
2373
(
1999
).
6.
7.
A. A.
Mamun
and
P. K.
Shukla
,
J. Geophys. Res.
107
,
SIA 15
, (
2002
).
8.
H.
Demiray
,
Z. Angew. Math. Phys.
65
,
1223
(
2014
).
9.
H.
Washimi
and
T.
Taniuti
,
Phys. Rev. Lett.
17
,
996
(
1966
).
10.
S. K.
El-Labany
,
W. F.
El-Taibany
, and
A.
Zedan
,
Phys. Plasmas
24
,
112118
(
2017
).
11.
T.
Taniuti
,
Suppl. Prog. Theor. Phys
55
,
1
(
1974
).
12.
S.
Maxon
and
J.
Vicelli
,
Phys. Fluids
17
,
1614
(
1974
).
13.
S.
Maxon
and
J.
Vicelli
,
Phys. Rev. Lett.
32
,
4
(
1974
).
14.
A.
Nakamura
and
H. H.
Chen
,
J. Phys. Soc. Jpn.
50
,
711
(
1981
).
16.
B.
Sahu
and
R.
Roychoudhury
,
Phys. Plasmas
10
,
4162
(
2003
).
17.
H.
Demiray
and
C.
Bayindir
,
Phys. Plasmas
22
,
092105
(
2015
).
18.
H. G.
Abdelwahed
,
E. K.
El-Shewy
, and
A. A.
Mahmoud
,
Phys. Plasmas
24
,
082107
(
2017
).
19.
H.
Demiray
,
Appl. Math. Comput.
132
,
643
(
2002
).
20.
H.
Demiray
,
Comput. Math. Appl.
60
,
1747
(
2010
).
21.
H.
Demiray
,
Chaos, Solitons Fractals
42
(
1
),
358
(
2009
).
22.
B. A.
Finlayson
,
The Method of Weighted Residuals and Variational Principles
(
Academic
,
New York
,
1972
).
23.
C. A. J.
Fletcher
,
Weighted Residual Methods. In: Computational Techniques for Fluid Dynamics
, Springer Series in Computational Physics (
Springer
,
Berlin, Heidelberg
,
1998
).
You do not currently have access to this content.