Interest in plasma-liquid interaction phenomena has grown in recent years due to applications in plasma medicine, water purification, and plasma-hydrocarbon reforming. The plasma in contact with liquid is generated, for example, using the plasma jets or streamer discharges. The interaction between the streamer and water can cause both physical and chemical modifications of the liquid. In this paper, the interaction between an anode-directed streamer and the de-ionized water is studied using one-dimensional particle-in-cell Monte Carlo collisions model. In this model, plasma species in both gas and liquid phase are considered as the macro-particles. We find that the penetration of the streamer head into the liquid causes ionization of water molecules by electron impact, a process which is usually ignored in the fluid models. The main charge carriers in the liquid phase are negative water ions which agree with earlier experimental and computational modeling studies. Additionally, we observe an ion-rich sheath in the vicinity of the water surface on the gas side.

1.
P. J.
Bruggeman
,
M. J.
Kushner
,
B. R.
Locke
,
J. G. E.
Gardeniers
,
W. G.
Graham
,
D. B.
Graves
,
R. C. H. M.
Hofman-Caris
,
D.
Maric
,
J. P.
Reid
,
E.
Ceriani
,
D.
Fernandez Rivas
,
J. E.
Foster
,
S. C.
Garrick
,
Y.
Gorbanev
,
S.
Hamaguchi
,
F.
Iza
,
H.
Jablonowski
,
E.
Klimova
,
J.
Kolb
,
F.
Krcma
,
P.
Lukes
,
Z.
Machala
,
I.
Marinov
,
D.
Mariotti
,
S.
Mededovic Thagard
,
D.
Minakata
,
E. C.
Neyts
,
J.
Pawlat
,
Z.
Lj Petrovic
,
R.
Pfleger
,
S.
Reuter
,
D. C.
Schram
,
S.
Schröter
,
M.
Shiraiwa
,
B.
Tarabova
,
P. A.
Tsai
,
J. R. R.
Verlet
,
T.
von Woedtke
,
K. R.
Wilson
,
K.
Yasui
, and
G.
Zvereva
,
Plasma Source Sci. Technol.
25
,
053002
(
2016
).
2.
J.
Meesungnoen
,
J.-P.
Jay-Gerin
,
A.
Filali-Mouhim
, and
S.
Mankhetkorn
,
Radiat. Res.
158
,
657
(
2002
).
3.
A.
Lindsay
,
C.
Anderson
,
E.
Slikboer
,
S.
Shannon
, and
D.
Graves
,
J. Phys. D: Appl. Phys.
48
,
424007
(
2015
).
4.
A. M.
Lietz
and
M. J.
Kushner
,
J. Phys. D: Appl. Phys.
49
,
425204
(
2016
).
5.
R.
Akolkar
and
R.
Mohan Sankaran
,
J. Vac. Sci. Technol. A
31
(
5
),
050811
(
2013
).
6.
P.
Rumbach
and
D. B.
Go
,
Top. Catal.
60
,
799
811
(
2017
).
7.
Z. C.
Liu
,
D. X.
Liu
,
C.
Chen
,
D.
Li
,
A. J.
Yang
,
M. Z.
Rong
,
H. L.
Chen
, and
M. G.
Kong
,
J. Phys. D: Appl. Phys.
48
,
495201
(
2015
).
8.
S.
Mededovic Thagard
,
G. R.
Stratton
,
F.
Dai
,
C. L.
Bellona
,
T. M.
Holsen
,
D. G.
Bohl
,
E.
Paek
, and
E. R.
Dickenson
,
J. Phys. D: Appl. Phys.
50
,
014003
(
2017
).
9.
B. R.
Locke
and
K.-Y.
Shih
,
Plasma Source Sci. Technol.
20
,
034006
(
2011
).
10.
P.
Rumbach
,
D. M.
Bartels
,
R.
Mohan Sankaran
, and
D. B.
Go
,
Nat. Commun.
6
,
7248
(
2015
).
11.
R.
Gopalakrishnan
,
E.
Kawamura
,
A. J.
Lichtenberg
,
M. A.
Lieberman
, and
D. B.
Graves
,
J. Phys. D: Appl. Phys.
49
,
295205
(
2016
).
12.
P.
Rumbach
,
J. P.
Clarke
, and
D. B.
Go
,
Phys. Rev. E
95
,
053203
(
2017
).
13.
J. E.
Foster
,
Phys. Plasmas
24
,
055501
(
2017
).
14.
G.
Fridman
,
G.
Friedman
,
A.
Gutsol
,
A. B.
Shekhter
,
V. N.
Vasilets
, and
A.
Fridman
,
Plasma Process. Polym.
5
,
503
(
2008
).
15.
C.
De Vos
,
J.
Baneton
,
M.
Witzke
,
J.
Dille
,
S.
Godet
,
M. J.
Gordon
,
R.
Mohan Sankaran
, and
F.
Reniers
,
J. Phys. D: Appl. Phys.
50
,
105206
(
2017
).
16.
D.
Levko
and
L. L.
Raja
,
J. Appl. Phys.
119
,
153301
(
2016
).
17.
D.
Levko
,
S.
Yatom
,
V.
Vekselman
,
J. Z.
Gleizer
,
V. Tz.
Gurovich
, and
Ya. E.
Krasik
,
J. Appl. Phys.
111
,
013304
(
2012
).
18.
See https://www.particleincell.com/2015/stretched-mesh/ for non-uniform mesh finite difference.
19.
V.
Cobut
,
Y.
Frongillo
,
J. P.
Patau
,
T.
Goulet
,
M.-J.
Fraser
, and
J.-P.
Jay-Gerin
,
Radiat. Phys. Chem.
51
,
229
(
1998
).
20.
C.
Champion
,
Phys. Med. Biol.
55
,
11
(
2010
).
21.
K. P.
Madden
and
S. P.
Mezyk
,
J. Phys. Chem. Ref. Data
40
,
023103
(
2011
).
22.
Y.
Itikawa
and
N.
Mason
,
J. Phys. Chem. Ref. Data
34
,
1
(
2005
).
23.
Yu. P.
Raizer
,
Gas Discharge Physics
(
Springer
,
Berlin
,
1991
).
You do not currently have access to this content.