A non-invasive method of determining the collision frequency νm by measuring the net plasma impendence in a magnetized, capacitive-coupled, radio-frequency (rf) discharge circuit is developed. The collision frequency has been analytically expressed in terms of bulk plasma reactance, wherein standard sheath models have been used to estimate the reactance offered due to the capacitive rf sheaths at the discharge plates. The experimental observations suggest that in the un-magnetized case, νm remains constant over a range of rf current but steadily increases as the background pressure reduces. In the magnetized case, the collision frequency has been observed to decay with the increase in rf current while it remains unaffected by the background pressure. A qualitative discussion has been presented to explain these characteristics.

1.
M. A.
Lieberman
and
A. J.
Lichtenberg
, “
Principles of plasma discharges and materials processing
,”
MRS Bull.
30
,
899
901
(
1994
).
2.
M. M.
Turner
,
D. A. W.
Hutchinson
,
R. A.
Doyle
, and
M. B.
Hopkins
, “
Heating mode transition induced by a magnetic field in a capacitive rf discharge
,”
Phys. Rev. Lett.
76
(
12
),
2069
(
1996
).
3.
I. D.
Kaganovich
,
V. I.
Kolobov
, and
L. D.
Tsendin
, “
Stochastic electron heating in bounded radio‐frequency plasmas
,”
Appl. Phys. Lett.
69
(
25
),
3818
3820
(
1996
).
4.
C.
Beneking
, “
Power dissipation in capacitively coupled rf discharges
,”
J. Appl. Phys.
68
(
9
),
4461
4473
(
1990
).
5.
V. A.
Godyak
,
R. B.
Piejak
, and
B. M.
Alexandrovich
, “
Electrical characteristics of parallel-plate rf discharges in argon
,”
IEEE Trans. Plasma Sci.
19
(
4
),
660
676
(
1991
).
6.
V. A.
Godyak
,
R. B.
Piejak
, and
B. M.
Alexandrovich
, “
Effective electron collision frequency and electrical conductivity of radio frequency plasmas
,”
J. Appl. Phys.
85
(
6
),
3081
3083
(
1999
).
7.
V. A.
Godyak
,
R. B.
Piejak
, and
B. M.
Alexandrovich
, “
Measurement of electron energy distribution in low-pressure RF discharges
,”
Plasma Sources Sci. Technol.
1
(
1
),
36
(
1992
).
8.
V. A.
Godyak
,
R. B.
Piejak
, and
B. M.
Alexandrovich
, “
Evolution of the electron-energy-distribution function during rf discharge transition to the high-voltage mode
,”
Phys. Rev. Lett.
68
(
1
),
40
(
1992
).
9.
Y.
Fan
,
Y.
Zou
,
J.
Sun
,
T.
Stirner
, and
D.
Wang
, “
Study of the effects of a transverse magnetic field on radio frequency argon discharges by two-dimensional particle-in-cell-Monte-Carlo collision simulations
,”
Phys. Plasmas
20
(
10
),
103507
(
2013
).
10.
S.
Yang
,
Y.
Zhang
,
H. Y.
Wang
,
S.
Wang
, and
W.
Jiang
, “
Numerical characterization of magnetized capacitively coupled argon plasmas driven by combined dc/rf sources
,”
Phys. Plasmas
24
(
3
),
033504
(
2017
).
11.
S. H.
Lee
,
S. J.
You
,
H. Y.
Chang
, and
J. K.
Lee
, “
Electron and ion kinetics in magnetized capacitively coupled plasma source
,”
J. Vac. Sci. Technol. A
25
(
3
),
455
463
(
2007
).
12.
S. J.
You
,
T. T.
Hai
,
M.
Park
,
D. W.
Kim
,
J. H.
Kim
,
D. J.
Seong
,
Y. H.
Shin
,
S. H.
Lee
,
G. Y.
Park
,
J. K.
Lee
, and
H. Y.
Chang
, “
Role of transverse magnetic field in the capacitive discharge
,”
Thin Solid Films
519
(
20
),
6981
6989
(
2011
).
13.
E. V.
Barnat
,
P. A.
Miller
, and
A. M.
Paterson
, “
RF discharge under the influence of a transverse magnetic field
,”
Plasma Sources Sci. Technol.
17
(
4
),
045005
(
2008
).
14.
S. J.
You
,
C. W.
Chung
,
K. H.
Bai
, and
H. Y.
Chang
, “
Power dissipation mode transition by a magnetic field
,”
Appl. Phys. Lett.
81
(
14
),
2529
2531
(
2002
).
15.
J. R.
Myra
,
D. A.
D'Ippolito
, and
H.
Kohno
, “
Role of magnetic field tangency points in ICRF sheath interactions
,”
AIP Conf. Proc.
1580
(
1
),
322
325
(
2014
).
16.
U.
Helmersson
,
M.
Lattemann
,
J.
Bohlmark
,
A. P.
Ehiasarian
, and
J. T.
Gudmundsson
, “
Ionized physical vapor deposition (IPVD): A review of technology and applications
,”
Thin Solid Films
513
(
1
),
1
24
(
2006
).
17.
G. Y.
Yeom
,
J. A.
Thornton
, and
M. J.
Kushner
, “
Cylindrical magnetron discharges. I. Current‐voltage characteristics for dc‐and rf‐driven discharge sources
,”
J. Appl. Phys.
65
(
10
),
3816
3824
(
1989
).
18.
D.
Gerst
,
S.
Cuynet
,
M.
Cirisan
, and
S.
Mazouffre
, “
Plasma drift in a low-pressure magnetized radio frequency discharge
,”
Plasma Sources Sci. Technol.
22
(
1
),
015024
(
2013
).
19.
K. H.
You
,
S. J.
You
,
D. W.
Kim
,
B. K.
Na
,
B. H.
Seo
,
J. H.
Kim
,
D. J.
Seong
, and
H. Y.
Chang
, “
Measurement of electron density using reactance cutoff probe
,”
Phys. Plasmas
23
(
5
),
053515
(
2016
).
20.
S. K.
Karkari
and
A. R.
Ellingboe
, “
Effect of radio-frequency power levels on electron density in a confined two-frequency capacitively-coupled plasma processing tool
,”
Appl. Phys. Lett.
88
(
10
),
101501
(
2006
).
21.
S. K.
Karkari
,
A. R.
Ellingboe
, and
C.
Gaman
, “
Direct measurement of spatial electron density oscillations in a dual frequency capacitive plasma
,”
Appl. Phys. Lett.
93
(
7
),
071501
(
2008
).
22.
P.
Chabert
and
N.
Braithwaite
,
Physics of Radio-Frequency Plasmas
(
Cambridge University Press
,
2011
).
23.
J. A.
Bittencourt
,
Fundamentals of Plasma Physics
(
Springer
,
Berlin
,
2004
).
24.
W.
Guo
and
C. A.
DeJoseph
, Jr.
, “
Time-resolved current and voltage measurements on a pulsed rf inductively coupled plasma
,”
Plasma Sources Sci. Technol.
10
(
1
),
43
(
2001
).
25.
V. A.
Godyak
and
R. B.
Piejak
, “
Insitu simultaneous radio frequency discharge power measurements
,”
J. Vac. Sci. Technol. A
8
(
5
),
3833
3837
(
1990
).
26.
B. G.
Heil
,
J.
Schulze
,
T.
Mussenbrock
,
R. P.
Brinkmann
, and
U.
Czarnetzki
, “
Numerical modeling of electron beams accelerated by the radio frequency boundary sheath
,”
IEEE Trans. Plasma Sci.
36
(
4
),
1404
1405
(
2008
).
27.
J.
Schulze
,
B. G.
Heil
,
D.
Luggenholscher
, and
U.
Czarnetzki
, “
Electron beams in capacitively coupled radio-frequency discharges
,”
IEEE Trans. Plasma Sci.
36
(
4
),
1400
1401
(
2008
).
28.
J.
Schulze
,
B. G.
Heil
,
D.
Luggenholscher
,
T.
Mussenbrock
,
R. P.
Brinkmann
, and
U.
Czarnetzki
, “
Electron beams in asymmetric capacitively coupled radio-frequency discharges at low pressure
,”
J. Phys. D: Appl. Phys.
41
(
4
),
042003
(
2008
).
29.
K. H.
Baek
,
Y.
Jung
,
G. J.
Min
,
C.
Kang
,
H. K.
Cho
, and
J. T.
Moon
, “
Chamber maintenance and fault detection technique for a gate etch process via self-excited electron resonance spectroscopy
,”
J. Vac. Sci. Technol. B
23
,
125
(
2005
).
You do not currently have access to this content.