C4F8-CO2 mixtures are one of the potential substitutes to SF6 in high-voltage circuit breakers. However, the arc quenching ability of C4F8-CO2 mixtures is still unknown. In order to provide the necessary basic data for the further investigation of arc quenching performance, the compositions, thermodynamic properties, transport coefficients, and net emission coefficients (NEC) of various C4F8-CO2 mixtures are calculated at temperatures of 300–30 000 K in this work. The thermodynamic properties are presented as the product of mass density and specific heat, i.e., ρCp. The transport coefficients include electrical conductivity, viscosity, and thermal conductivity. The atomic and molecular radiation are both taken into account in the calculation of NEC. The comparison of the properties between SF6 and C4F8-CO2 mixtures is also discussed to find their differences. The results of compositions show that C4F8-CO2 mixtures have a distinctive advantage over other alternative gases e.g., CF3I and C3F8, because the dissociative product (i.e., C4F6) of C4F8 at low temperatures has a very high dielectric strength. This is good for an arc quenching medium to endure the arc recovery phase. Compared with SF6, C4F8-CO2 mixtures present lower ρCp at temperatures below 2800 K and larger thermal conductivity above 2800 K. Based on the position of peaks in thermal conductivity, we predict that the cooling of C4F8-CO2 arc will be slowed down at higher temperatures than that of SF6 arc. It is also found that the mixing of CO2 shows slight effects on the electrical conductivity and NEC of C4F8-CO2 mixtures.

1.
L.
Zhong
,
A.
Yang
,
X.
Wang
,
D.
Liu
,
Y.
Wu
, and
M.
Rong
,
Phys. Plasmas
21
(
5
),
053506
(
2014
).
2.
L.
Zhong
,
Influence of Copper Contamination on Thermophysical, Radiation, and Dielectric Breakdown Properties of CO2-N2 Mixtures as Replacement of SF6 in Circuit Breakers
(
Université Toulouse III-Paul Sabatier
,
2017
).
3.
Y.
Qiu
and
Y.
Feng
, in
Conference Record of the 1996 IEEE International Symposium on Electrical Insulation
(IEEE, Montreal, Quebec, Canada,
1996
), Vol.
2
, pp.
766
769
.
4.
M.
Pinheiro
and
J.
Loureiro
,
J. Phys. D: Appl. Phys.
35
(
23
),
3077
(
2002
).
5.
W.
Wang
,
A. B.
Murphy
,
M.
Rong
,
H. M.
Looe
, and
J. W.
Spencer
,
J. Appl. Phys.
114
(
10
),
103301
(
2013
).
6.
Y.
Wu
,
W.
Wang
,
M.
Rong
,
L.
Zhong
,
J.
Spencer
, and
J.
Yan
,
IEEE Trans. Dielectr. Electr. Insul.
21
(
1
),
129
137
(
2014
).
7.
M.
Koch
and
C. M.
Franck
,
J. Phys. D: Appl. Phys.
47
(
40
),
405203
(
2014
).
8.
X.
Wang
,
L.
Zhong
,
J.
Yan
,
A.
Yang
,
G.
Han
,
G.
Han
,
Y.
Wu
, and
M.
Rong
,
Eur. Phys. J. D
69
(
10
),
240
(
2015
).
9.
O.
Yamamoto
,
T.
Takuma
,
S.
Hamada
,
Y.
Yamakawa
, and
M.
Yashima
,
IEEE Trans. Dielectr. Electr. Insul.
8
(
6
),
1075
1081
(
2001
).
10.
B.-T.
Wu
,
D.-M.
Xiao
,
Z.-S.
Liu
,
L.-C.
Zhang
, and
X.-L.
Liu
,
J. Phys. D: Appl. Phys.
39
(
19
),
4204
4207
(
2006
).
11.
M.
Rabie
and
C. M.
Franck
,
Environ. Sci. Technol.
52
(
2
),
369
380
(
2018
).
12.
L.
Zhong
,
M.
Rong
,
X.
Wang
,
J.
Wu
,
G.
Han
,
G.
Han
,
Y.
Lu
,
A.
Yang
, and
Y.
Wu
,
AIP Adv.
7
(
7
),
075003
(
2017
).
13.
S.
Xiao
,
Y.
Li
,
X.
Zhang
,
S.
Tian
,
Z.
Deng
, and
J.
Tang
,
AIP Adv.
7
(
6
),
065017
(
2017
).
14.
J. C.
Devins
,
IEEE Trans. Electr. Insul.
EI-15
(
2
),
81
86
(
1980
).
15.
L. G.
Christophorou
,
J. K.
Olthoff
, and
D. S.
Green
,
Gases for Electrical Insulation and Arc Interruption: Possible Present and Future Alternatives to Pure SF6
(
US Department of Commerce, Technology Administration
,
National Institute of Standards and Technology
,
1997
).
16.
D.
Xiao
,
Gas Discharge and Gas Insulation
(
Shanghai Jiao Tong University Press, Springer
,
Shanghai, Verlag Berlin Heidelberg
,
2016
).
17.
G. I.
Font
,
W. L.
Morgan
, and
G.
Mennenga
,
J. Appl. Phys.
91
(
6
),
3530
(
2002
).
18.
X.
Li
,
H.
Zhao
,
S.
Jia
, and
A. B.
Murphy
,
J. Phys. D: Appl. Phys.
47
(
42
),
425204
(
2014
).
19.
L.
Zhong
,
X.
Wang
,
Y.
Cressault
,
P.
Teulet
, and
M.
Rong
,
Phys. Plasmas
23
(
9
),
093514
(
2016
).
20.
M.
Rong
,
L.
Zhong
,
Y.
Cressault
,
A.
Gleizes
,
X.
Wang
,
F.
Chen
, and
H.
Zheng
,
J. Phys. D: Appl. Phys.
47
(
49
),
495202
(
2014
).
21.
X.
Wang
,
L.
Zhong
,
Y.
Cressault
,
A.
Gleizes
, and
M.
Rong
,
J. Phys. D: Appl. Phys.
47
(
49
),
495201
(
2014
).
22.
L.
Zhong
,
X.
Wang
,
M.
Rong
, and
Y.
Cressault
,
Eur. Phys. J. D
70
(
11
),
233
(
2016
).
23.
L.
Zhong
,
X.
Wang
,
M.
Rong
,
Y.
Wu
, and
A. B.
Murphy
,
Phys. Plasmas
21
(
10
),
103506
(
2014
).
24.
Y.
Cressault
,
V.
Connord
,
H.
Hingana
,
P.
Teulet
, and
A.
Gleizes
,
J. Phys. D: Appl. Phys.
44
(
49
),
495202
(
2011
).
25.
X.
Wang
,
L.
Zhong
,
M.
Rong
,
A.
Yang
,
D.
Liu
,
Y.
Wu
, and
S.
Miao
,
J. Phys. D: Appl. Phys.
48
(
15
),
155205
(
2015
).
26.
B.
Chervy
,
J.-J.
Gonzalez
, and
A.
Gleizes
,
IEEE Trans. Plasma Sci.
24
(
1
),
210
217
(
1996
).
27.
J.
Liu
,
Q.
Zhang
,
J.
Yan
,
J.
Zhong
, and
M.
Fang
,
J. Phys. D: Appl. Phys.
49
(
43
),
435201
(
2016
).
28.
F.
Copeland
and
D.
Crothers
,
At. Data Nucl. Data Tables
65
(
2
),
273
288
(
1997
).
29.
M.
Capitelli
,
C.
Gorse
,
S.
Longo
, and
D.
Giordano
,
J. Thermophys. Heat Transfer
14
(
2
),
259
268
(
2000
).
30.
Y.
Cressault
,
R.
Hannachi
,
P.
Teulet
,
A.
Gleizes
,
J. P.
Gonnet
, and
J. Y.
Battandier
,
Plasma Sources Sci. Technol.
17
(
3
),
035016
(
2008
).
31.
P.
Teulet
,
J. J.
Gonzalez
,
A.
Mercado-Cabrera
,
Y.
Cressault
, and
A.
Gleizes
,
J. Phys. D: Appl. Phys.
42
(
18
),
185207
(
2009
).
32.
J.
Lowke
,
J. Quant. Spectrosc. Radiat. Transfer
14
(
2
),
111
122
(
1974
).
33.
Y.
Cressault
,
M. E.
Rouffet
,
A.
Gleizes
, and
E.
Meillot
,
J. Phys. D: Appl. Phys.
43
(
33
),
335204
(
2010
).
34.
Y.
Cressault
and
A.
Gleizes
,
J. Phys. D: Appl. Phys.
46
(
41
),
415206
(
2013
).
35.
A.
Gleizes
,
M.
Gongassian
, and
B.
Rahmani
,
J. Phys. D: Appl. Phys.
22
(
1
),
83
(
1989
).
36.
A.
Gleizes
,
B.
Rahmani
,
J.
Gonzalez
, and
B.
Liani
,
J. Phys. D: Appl. Phys.
24
(
8
),
1300
(
1991
).
37.
Y.
Cressault
,
AIP Adv.
5
(
5
),
057112
(
2015
).
38.
A.
Kramida
,
Y.
Ralchenko
,
J.
Reader
, and
NIST ASD Team
,
NIST Atomic Spectra Database (version 5.3)
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2015
).
39.
R. L.
Kurucz
and
E.
Peytremann
,
Report No. NASA-CR-142879
,
1975
.
40.
L. S.
Rothman
,
I. E.
Gordon
,
Y.
Babikov
,
A.
Barbe
,
D. C.
Benner
,
P. F.
Bernath
,
M.
Birk
,
L.
Bizzocchi
,
V.
Boudon
, and
L. R.
Brown
,
J. Quant. Spectrosc. Radiat. Transfer
130
,
4
50
(
2013
).
41.
C.
Jan
,
Y.
Cressault
,
A.
Gleizes
, and
K.
Bousoltane
,
J. Phys. D: Appl. Phys.
47
(
1
),
015204
(
2014
).
42.
S. C.
Roy
,
L.
Kissel
, and
R. H.
Pratt
,
Radiat. Phys. Chem.
56
(
1–2
),
3
26
(
1999
).
43.
A. M.
El-Khayatt
and
İ.
Akkurt
,
Ann. Nucl. Energy
60
(
10
),
8
14
(
2013
).
You do not currently have access to this content.