The effects of radiation reaction (RR) have been studied extensively by using the interaction of ultraintense lasers with a counter-propagating relativistic electron. At the laser intensity at the order of 1023 W/cm2, the effects of RR are significant in a few laser periods for a relativistic electron. However, a laser at such intensity is tightly focused and the laser energy is usually assumed to be fixed. Then, the signal of RR and energy conservation cannot be guaranteed. To assess the effects of RR in a tightly focused laser pulse and the evolution of the laser energy, we simulated this interaction with a beam of 109 electrons by means of a Particle-In-Cell method. We observe that the effects of RR are suppressed due to the ponderomotive force and accompanied by a non-negligible amount of laser field energy reduction. This is because the ponderomotive force prevents the electrons from approaching the center of the laser pulse and leads to an interaction at the weaker field region. At the same time, the laser energy is absorbed through ponderomotive acceleration. Thus, the kinetic energy of the electron beam has to be carefully selected such that the effects of RR become obvious.

1.
A.
Di Piazza
,
K. Z.
Hatsagortsyan
, and
C. H.
Keitel
,
Phys. Rev. Lett.
102
,
254802
(
2009
).
2.
A. G. R.
Thomas
,
C. P.
Ridgers
,
S. S.
Bulanov
,
B. J.
Griffin
, and
S. P. D.
Mangles
,
Phys. Rev. X
2
,
041004
(
2012
).
3.
T.
Nakamura
,
J. K.
Koga
,
T. Z.
Esirkepov
,
M.
Kando
,
G.
Korn
, and
S. V.
Bulanov
,
Phys. Rev. Lett.
108
,
195001
(
2012
).
4.
T. G.
Blackburn
,
C. P.
Ridgers
,
J. G.
Kirk
, and
A. R.
Bell
,
Phys. Rev. Lett.
112
,
015001
(
2014
).
5.
T. G.
Blackburn
,
Plasma Phys. Controlled Fusion
57
,
075012
(
2015
).
6.
J. F.
Ong
,
W. R.
Teo
,
T.
Moritaka
, and
H.
Takabe
,
Phys. Plasmas
23
,
053117
(
2016
).
7.
G. A. e. a.
Mourou
,
ELI-Extreme Light Infrastructure Science and Technology with Ultra-Intense Lasers WHITE-BOOK
(
THOSS Media GmbH
,
Berlin
,
2011
).
8.
See http://www.eli-np.ro for ELI-NP homepage.
9.
K. T.
McDonald
, “
Gaussian laser beams and particle acceleration
,” see http://www.hep.princeton.edu/mcdonald/examples/gaussian.pdf.
10.
K. T.
McDonald
, “Gaussian laser beams with radial polarization,” see http://www.hep.princeton.edu/%7Emcdonald/examples/axicon.pdf.
11.
12.
T. W. B.
Kibble
,
Phys. Rev.
150
,
1060
(
1966
).
13.
N. B.
Narozhny
and
M. S.
Fofanov
,
J. Exp. Theor. Phys.
90
,
753
(
2000
).
14.
C. S.
Brady
and
T. D.
Arber
,
Plasma Phys. Controlled Fusion
53
,
015001
(
2011
).
15.
C. P.
Ridgers
,
T. G.
Blackburn
,
D.
Del Sorbo
,
L. E.
Bradley
,
C.
Slade-Lowther
,
C. D.
Baird
,
S. P. D.
Mangles
,
P.
McKenna
,
M.
Marklund
,
C. D.
Murphy
 et al.,
J. Plasma Phys.
83
,
715830502
(
2017
).
16.
C.
Ridgers
,
J.
Kirk
,
R.
Duclous
,
T.
Blackburn
,
C.
Brady
,
K.
Bennett
,
T.
Arber
, and
A.
Bell
,
J. Comput. Phys.
260
,
273
(
2014
).
17.
M.
Vranic
,
T.
Grismayer
,
R. A.
Fonseca
, and
L. O.
Silva
,
New J. Phys.
18
,
073035
(
2016
).
18.
H. Y.
Wang
,
X. Q.
Yan
, and
M.
Zepf
,
Phys. Plasmas
22
,
093103
(
2015
).
19.
I.
Sokolov
,
N. M.
Naumova
,
J. A.
Nees
,
G. A.
Mourou
, and
V. P.
Yanovsky
,
Phys. Plasmas
16
,
093115
(
2009
).
20.
I. V.
Sokolov
,
N. M.
Naumova
, and
J. A.
Nees
,
Phys. Plasmas
18
,
093109
(
2011
).
21.
I.
Sokolov
,
J. Exp. Theor. Phys.
109
,
207
(
2009
).
22.
A.
Macchi
,
A Superintense Laser-Plasma Interaction Theory Primer
, SpringerBriefs in Physics (
Springer
,
The Netherlands
,
2013
).
23.
A. M.
Fedotov
,
N. V.
Elkina
,
E. G.
Gelfer
,
N. B.
Narozhny
, and
H.
Ruhl
,
Phys. Rev. A
90
,
053847
(
2014
).
You do not currently have access to this content.