In the context of temperature gradient-driven, collisionless trapped-ion modes in magnetic confinement fusion, we perform and analyse numerical simulations to explore the turbulent transport of density and heat, with a focus on the velocity dimension (without compromising the details in the real space). We adopt the bounce-averaged gyrokinetic code TERESA, which focuses on trapped particles dynamics and allows one to study low frequency phenomena at a reduced computational cost. We focus on a time in the simulation where the trapped-ion modes have just saturated in amplitude. We present the structure in velocity space of the fluxes. Both density and heat fluxes present a narrow (temperature-normalized energy width ΔE/T 0.15) resonance peak with an amplitude high enough for resonant particles to contribute for 90% of the heat flux. We then compare these results obtained from a nonlinear simulation to the prediction from the quasi-linear theory and we find a qualitative agreement throughout the whole energy dimension: from thermal particles to high-energy particles. Quasi-linear theory over-predicts the fluxes by about 15%; however, this reasonable agreement is the result of a compensation between two larger errors of about 50%, both at the resonant energy and at the thermal energy.

1.
X.
Garbet
,
Y.
Idomura
,
L.
Villard
, and
T. H.
Watanabe
, “
Gyrokinetic simulations of turbulent transport
,”
Nucl. Fusion
50
(
4
),
043002
(
2010
).
2.
B.
Borisovich Kadomtsev
,
Plasma Turbulence
(
Academic Press
,
1965
).
3.
Z.
Lin
,
T. S.
Hahm
,
W. W.
Lee
,
W. M.
Tang
, and
R. B.
White
, “
Turbulent transport reduction by zonal flows: Massively parallel simulations
,”
Science
281
(
5384
),
1835
1837
(
1998
).
4.
B. N.
Rogers
,
W.
Dorland
, and
M.
Kotschenreuther
, “
Generation and stability of zonal flows in ion-temperature-gradient mode turbulence
,”
Phys. Rev. Lett.
85
(
25
),
5336
(
2000
).
5.
E-j
Kim
and
P. H.
Diamond
, “
Dynamics of zonal flow saturation in strong collisionless drift wave turbulence
,”
Phys. Plasmas
9
(
11
),
4530
4539
(
2002
).
6.
P. H.
Diamond
,
S. I.
Itoh
,
K.
Itoh
, and
T. S.
Hahm
, “
Zonal flows in plasma: A review
,”
Plasma Phys. Controlled Fusion
47
(
5
),
R35
(
2005
).
7.
A. M.
Dimits
,
J. F.
Drake
,
A. B.
Hassam
, and
B.
Meerson
, “
Formation of streamers in plasma with an ion temperature gradient
,”
Phys. Fluids B: Plasma Phys.
2
(
11
),
2591
2599
(
1990
).
8.
S.
Champeaux
and
P. H.
Diamond
, “
Streamer and zonal flow generation from envelope modulations in drift wave turbulence
,”
Phys. Lett. A
288
(
3-4
),
214
219
(
2001
).
9.
T.
Yamada
,
S.-I.
Itoh
,
T.
Maruta
,
N.
Kasuya
,
Y.
Nagashima
,
S.
Shinohara
,
K.
Terasaka
,
M.
Yagi
,
S.
Inagaki
,
Y.
Kawai
 et al., “
Anatomy of plasma turbulence
,”
Nat. Phys.
4
(
9
),
721
(
2008
).
10.
A.
Brizard
and
T.
Hahm
, “
Foundations of nonlinear gyrokinetic theory
,”
Rev. Mod. Phys.
79
(
2
),
421
(
2007
).
11.
Y.
Sarazin
,
V.
Grandgirard
,
J.
Abiteboul
,
S.
Allfrey
,
X.
Garbet
,
P.
Ghendrih
,
G.
Latu
,
A.
Strugarek
, and
G.
Dif-Pradalier
, “
Large scale dynamics in flux driven gyrokinetic turbulence
,”
Nucl. Fusion
50
(
5
),
054004
(
2010
).
12.
G.
Depret
,
X.
Garbet
,
P.
Bertrand
, and
A.
Ghizzo
, “
Trapped-ion driven turbulence in tokamak plasmas
,”
Plasma Phys. Controlled Fusion
42
(
9
),
949
(
2000
).
13.
T.
Cartier-Michaud
,
P.
Ghendrih
,
V.
Grandgirard
, and
G.
Latu
, “
Optimizing the parallel scheme of the Poisson solver for the reduced kinetic code Teresa
,” in
ESAIM: Proceedings
(EDP Sciences,
2013
), Vol.
43
, pp.
274
294
.
14.
T.
Drouot
,
E.
Gravier
,
T.
Reveille
,
A.
Ghizzo
,
P.
Bertrand
,
X.
Garbet
,
Y.
Sarazin
, and
T.
Cartier-Michaud
, “
A gyro-kinetic model for trapped electron and ion modes
,”
Eur. Phys. J. D
68
(
10
),
280
(
2014
).
15.
E.
Sonnendrücker
,
J.
Roche
,
P.
Bertrand
, and
A.
Ghizzo
, “
The semi-Lagrangian method for the numerical resolution of the Vlasov equation
,”
J. Comput. Phys.
149
(
2
),
201
220
(
1999
).
16.
V.
Grandgirard
,
M.
Brunetti
,
P.
Bertrand
,
N.
Besse
,
X.
Garbet
,
P.
Ghendrih
,
G.
Manfredi
,
Y.
Sarazin
,
O.
Sauter
,
E.
Sonnendrücker
 et al., “
A drift-kinetic semi-Lagrangian 4d code for ion turbulence simulation
,”
J. Comput. Phys.
217
(
2
),
395
423
(
2006
).
17.
S.
Maeyama
,
Y.
Idomura
,
T.-H.
Watanabe
,
M.
Nakata
,
M.
Yagi
,
N.
Miyato
,
A.
Ishizawa
, and
M.
Nunami
, “
Cross-scale interactions between electron and ion scale turbulence in a tokamak plasma
,”
Phys. Rev. Lett.
114
(
25
),
255002
(
2015
).
18.
M.
Lesur
,
T.
Cartier-Michaud
,
T.
Drouot
,
P. H.
Diamond
,
Y.
Kosuga
,
T.
Reveille
,
E.
Gravier
,
X.
Garbet
,
S.-I.
Itoh
, and
K.
Itoh
, “
A simple model for electron dissipation in trapped ion turbulence
,”
Phys. Plasmas
24
(
1
),
012511
(
2017
).
19.
A. A.
Vedenov
,
E. P.
Velikhov
, and
R. Z.
Sagdeev
, “
Quasi-linear theory of plasma oscillations
,”
Nucl. Fusion
Suppl. Pt. 2,
465
(
1962
).
20.
W. E.
Drummond
and
D.
Pines
, “
Non-linear stability of plasma oscillations
,”
Nucl. Fusion, Suppl.
Pt. 3,
1049
1057
(
1962
).
21.
J. C.
Adam
,
G.
Laval
, and
D.
Pesme
, “
Effets des interactions résonnantes ondes-particules en turbulence faible des plasmas
,”
Ann. Phys.
6
,
319
420
(
1981
).
22.
G.
Laval
and
D.
Pesme
, “
Breakdown of quasilinear theory for incoherent 1-d Langmuir waves
,”
Phys. Fluids
26
(
1
),
52
65
(
1983
).
23.
Y.
Elskens
and
D. F.
Escande
,
Microscopic Dynamics of Plasmas and Chaos
(
CRC Press
,
2002
).
24.
F.
Doveil
and
A.
Macor
, “
Two regimes of self-consistent heating of charged particles
,”
Phys. Rev. E
84
(
4
),
045401
(
2011
).
25.
C.
Bourdelle
,
J.
Citrin
,
B.
Baiocchi
,
A.
Casati
,
P.
Cottier
,
X.
Garbet
, and
F.
Imbeaux
, and
JET Contributors
, “
Core turbulent transport in tokamak plasmas: Bridging theory and experiment with qualikiz
,”
Plasma Phys. Controlled Fusion
58
(
1
),
014036
(
2016
).
26.
A.
Casati
,
C.
Bourdelle
,
X.
Garbet
,
F.
Imbeaux
,
J.
Candy
,
F.
Clairet
,
G.
Dif-Pradalier
,
G.
Falchetto
,
T.
Gerbaud
,
V.
Grandgirard
 et al., “
Validating a quasi-linear transport model versus nonlinear simulations
,”
Nucl. Fusion
49
(
8
),
085012
(
2009
).
27.
F.
Jenko
,
T.
Dannert
, and
C.
Angioni
, “
Heat and particle transport in a tokamak: Advances in nonlinear gyrokinetics
,”
Plasma Phys. Controlled Fusion
47
(
12B
),
B195
(
2005
).
28.
B.
Clarisse
, “
Turbulent transport in tokamak plasmas: Bridging theory and experiment
,” Ph.D. thesis,
Aix Marseille Université
,
2015
.
29.
J. C.
Adam
,
G.
Laval
, and
D.
Pesme
, “
Reconsideration of quasilinear theory
,”
Phys. Rev. Lett.
43
(
22
),
1671
(
1979
).
30.
T.
Cartier-Michaud
,
P.
Ghendrih
,
Y.
Sarazin
,
G.
Dif-Pradalier
,
T.
Drouot
,
D.
Estève
,
X.
Garbet
,
V.
Grandgirard
,
G.
Latu
,
C.
Norscini
 et al., “
Staircase temperature profiles and plasma transport self-organisation in a minimum kinetic model of turbulence based on the trapped ion mode instability
,”
J. Phys.: Conf. Ser.
561
,
012003
(
2014
).
31.
Y.
Sarazin
,
V.
Grandgirard
,
E.
Fleurence
,
X.
Garbet
,
P.
Ghendrih
,
P.
Bertrand
, and
G.
Depret
, “
Kinetic features of interchange turbulence
,”
Plasma Phys. Controlled Fusion
47
(
10
),
1817
(
2005
).
32.
G.
Darmet
,
P.
Ghendrih
,
Y.
Sarazin
,
X.
Garbet
, and
V.
Grandgirard
, “
Intermittency in flux driven kinetic simulations of trapped ion turbulence
,”
Commun. Nonlinear Sci. Numer. Simul.
13
(
1
),
53
58
(
2008
).
33.
T.
Drouot
,
E.
Gravier
,
T.
Reveille
,
M.
Sarrat
,
M.
Collard
,
P.
Bertrand
,
T.
Cartier-Michaud
,
P.
Ghendrih
,
Y.
Sarazin
, and
X.
Garbet
, “
Global gyrokinetic simulations of trapped-electron mode and trapped-ion mode microturbulence
,”
Phys. Plasmas
22
(
8
),
082302
(
2015
).
34.
T.
Drouot
, “
Étude de la turbulence liée aux particules piégées dans les plasmas de fusion
,” Ph.D. thesis,
Université de Lorraine
,
2015
.
35.
P. H.
Diamond
,
S.-I.
Itoh
, and
K.
Itoh
,
Modern Plasma Physics: Volume 1, Physical Kinetics of Turbulent Plasmas
(
Cambridge University Press
,
2010
).
36.
R.
Zinnurovič Sagdeev
and
A. A.
Galeev
,
Nonlinear Plasma Theory
(
Benjamin
,
New York
,
1969
).
You do not currently have access to this content.