In this paper, we perform comparative studies of compressible Kolmogorov flow in the two-dimensional strongly coupled dusty plasma by means of atomistic or molecular dynamics (MD) and continuum or computational fluid dynamics (CFD) methods. Recently, using MD simulation, generation of molecular shear heat at the atomistic level is shown to reduce the average coupling strength of the system and destruct the vortical structures. To suppress the molecular heat, a novel method of a thermostat, namely, the configurational thermostat is introduced by which the microscale heat generated by the shear flow has shown to be thermostatted out efficiently without compromising the large scale vortex dynamics. While using a configurational thermostat, it has been found that the growth rate obtained from both the studies is the same with the marginal difference. To make the comparison with the continuum fluid model, we perform the same study using the generalised hydrodynamic model, wherein molecular shear heating phenomena is completely absent, however, viscous dissipation is there at the macroscale level. For this purpose, an Advanced Generalised SPECTral Code has been developed to study the linear and nonlinear aspects of the Kolmogorov flow in the incompressible and compressible limit for viscoelastic fluids. All the phenomenological parameters used in CFD simulations have been calculated from MD simulations. Code is benchmarked against the eigen value solver in the linear regime. Linear growth-rates calculated from the phenomenological fluid model is found to be close to that obtained from MD simulation for the same set of input parameters. The transition from laminar to turbulent flow has been found at a critical value of Reynolds number Rc in both the macroscopic (CFD) and microscopic (MD) simulation. Rc in MD is smaller than the one obtained by CFD simulation. In the nonlinear regime of CFD, the mode becomes unstable and vortex formation happens earlier than in MD. The peak vorticity value is better preserved in MD whereas in the CFD model, we find that the peak vorticity is dissipated relatively earlier.

1.
G. E.
Morfill
and
A. V.
Ivlev
, “
Complex plasmas: An interdisciplinary research field
,”
Rev. Mod. Phys.
81
,
1353
(
2009
).
2.
V. E.
Fortov
,
V. I.
Molotkov
,
A. P.
Nefedov
, and
O. F.
Petrov
, “
Liquid- and crystallike structures in strongly coupled dusty plasmas
,”
Phys. Plasmas
6
,
1759
1768
(
1999
).
3.
G. E.
Morfill
,
H. M.
Thomas
,
U.
Konopka
, and
M.
Zuzic
, “
The plasma condensation: Liquid and crystalline plasmas
,”
Phys. Plasmas
6
,
1769
1780
(
1999
).
4.
H.
Thomas
,
G. E.
Morfill
,
V.
Demmel
,
J.
Goree
,
B.
Feuerbacher
, and
D.
Möhlmann
, “
Plasma crystal: Coulomb crystallization in a dusty plasma
,”
Phys. Rev. Lett.
73
,
652
(
1994
).
5.
J. H.
Chu
and
L.
I
, “
Direct observation of coulomb crystals and liquids in strongly coupled rf dusty plasmas
,”
Phys. Rev. Lett.
72
,
4009
(
1994
).
6.
W.-T.
Juan
,
M.-H.
Chen
, and
L.
I
, “
Nonlinear transports and microvortex excitations in sheared quasi-two-dimensional dust coulomb liquids
,”
Phys. Rev. E
64
,
016402
(
2001
).
7.
Y.
Feng
,
J.
Goree
, and
B.
Liu
, “
Observation of temperature peaks due to strong viscous heating in a dusty plasma flow
,”
Phys. Rev. Lett.
109
,
185002
(
2012
).
8.
M.
Sun
and
C.
Ebner
, “
Molecular-dynamics simulation of compressible fluid flow in two-dimensional channels
,”
Phys. Rev. A
46
,
4813
(
1992
).
9.
I.
Kandemir
and
A. M.
Kaya
, “
Molecular dynamics simulation of compressible hot/cold moving lid-driven microcavity flow
,”
Microfluid. Nanofluid.
12
,
509
520
(
2012
).
10.
A.
Gupta
and
R.
Ganesh
,
Phys. Plasmas
25
,
013705
(
2018
).
11.
A.
Joy
and
R.
Ganesh
, “
Effect of external drive on strongly coupled Yukawa systems: A nonequilibrium molecular dynamics study
,”
Phys. Rev. E
80
,
056408
(
2009
).
12.
A.
Gupta
,
R.
Ganesh
, and
A.
Joy
, “
Molecular shear heating and vortex dynamics in thermostatted two dimensional yukawa liquids
,”
Phys. Plasmas
23
,
073706
(
2016
).
13.
L. D.
Meshalkin
and
Y. G.
Sinai
,
J. Appl. Math. Mech.
25
,
1700
(
1961
).
14.
C.
Marchioro
, “
An example of absence of turbulence for any reynolds number
,”
Commun. Math. Phys.
105
,
99
106
(
1986
).
15.
Z. S.
She
, “
Metastability and vortex pairing in the Kolmogorov flow
,”
Phys. Lett. A
124
,
161
164
(
1987
).
16.
A.
Nepomniashchii
, “
On stability of secondary flows of a viscous fluid in unbounded space
,”
J. Appl. Math. Mech.
40
,
836
841
(
1976
).
17.
H.
Okamoto
and
M.
Shōji
, “
Bifurcation diagrams in Kolmogorov's problem of viscous incompressible fluid on 2-d flat tori
,”
Jpn. J. Ind. Appl. Math.
10
,
191
218
(
1993
).
18.
F.
Feudel
and
N.
Seehafer
, “
Bifurcations and pattern formation in a two-dimensional navier-stokes fluid
,”
Phys. Rev. E
52
,
3506
(
1995
).
19.
N. F.
Bodarenko
,
M. Z.
Gak
, and
F. V.
Dolzhansky
,
Izv. Akad. Nauk (Fiz. Atmos. Okeana)
15
,
1017
(
1979
).
20.
A. M.
Obukhov
, “
Kolmogorov flow and laboratory simulation of it
,”
Russ. Math. Surv.
38
,
113
(
1983
).
21.
D. H.
Kelley
and
N. T.
Ouellette
, “
Using particle tracking to measure flow instabilities in an undergraduate laboratory experiment
,”
Am. J. Phys.
79
,
267
(
2011
).
22.
K.
Roeller
,
J. R.
Vollmer
, and
S.
Herminghaus
, “
Unstable Kolmogorov flow in granular matter
,”
Chaos
19
,
041106
(
2009
).
23.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon
,
Oxford
,
1984
).
24.
I.
Bena
,
M. M.
Mansour
, and
F.
Baras
, “
Hydrodynamic fluctuations in the Kolmogorov flow: Linear regime
,”
Phys. Rev. E
59
,
5503
(
1999
).
25.
G.
Boffetta
 et al., “
The viscoelastic Kolmogorov flow: Eddy viscosity and linear stability
,”
J. Fluid Mech.
523
,
161
(
2005
).
26.
A.
Thess
, “
Instabilities in twodimensional spatially periodic flows. Part I: Kolmogorov flow
,”
Phys. Fluids A: Fluid Dyn. (1989–1993)
4
,
1385
(
1992
).
27.
A.
Manela
and
J.
Zhang
, “
The effect of compressibility on the stability of wall-bounded Kolmogorov flow
,”
J. Fluid Mech.
694
,
29
49
(
2012
).
28.
Y.
Couder
, “
The observation of a shear flow instability in a rotating system with a soap membrane
,”
J. Phys. Lett.
42
,
429
431
(
1981
).
29.
J. M.
Burgess
,
C.
Bizon
,
W. D.
McCormick
,
J. B.
Swift
, and
H. L.
Swinney
, “
Instability of the Kolmogorov flow in a soap film
,”
Phys. Rev. E
60
,
715
721
(
1999
).
30.
T. H.
Solomon
and
I.
Mezic
, “
Uniform resonant chaotic mixing in fluid flows
,”
Nature (London)
425
,
376
380
(
2003
).
31.
L.
Rossi
,
J.
Vassilicos
, and
Y.
Hardalupas
, “
Electromagnetically controlled multi-scale flows
,”
J. Fluid Mech.
558
,
207
(
2006
).
32.
D. J.
Evans
and
O.
Morriss
, “
Non-newtonian molecular dynamics
,”
Comput. Phys. Rep.
1
,
297
343
(
1984
).
33.
C.
Braga
and
K. P.
Travis
, “
A configurational temperature nose-hoover thermostat
,”
J. Chem. Phys.
123
,
134101
(
2005
).
34.
K. P.
Travis
and
C.
Braga
, “
Configurational temperature control for atomic and molecular systems
,”
J. Chem. Phys.
128
,
014111
(
2008
).
35.
G.
Salin
and
J.-M.
Caillol
, “
Transport coefficients of the yukawa one-component plasma
,”
Phys. Rev. Lett.
88
,
065002
(
2002
).
36.
P. K.
Kaw
and
A.
Sen
, “
Low frequency modes in strongly coupled dusty plasmas
,”
Phys. Plasmas
5
(
10
),
3552
(
1998
).
37.
A.
Diaw
and
M. S.
Murillo
, “
Generalized hydrodynamics model for strongly coupled plasmas
,”
Phys. Rev. E
92
,
013107
(
2015
).
38.
D.
Luo
,
B.
Zhao
,
G.
Hu
,
T.
Gong
,
Y.
Xia
, and
J.
Zheng
, “
Coherent dynamic structure factors of strongly coupled plasmas: A generalized hydrodynamic approach
,”
Phys. Plasmas
23
,
052707
(
2016
).
39.
Y. I.
Frenkel
,
Kinetic Theory of Liquids
(
Clarendon
,
Oxford
,
1946
).
40.
E. A.
Coutsias
,
F. R.
Hansen
,
T.
Huld
,
G.
Knorr
, and
J. P.
Lynov
, “
Spectral methods in numerical plasma simulation
,”
Phys. Scr.
40
,
270
(
1989
).
41.
A.
Gupta
,
R.
Ganesh
, and
A.
Joy
, “
Kolmogorov flow in two dimensional strongly coupled Yukawa liquid: A molecular dynamics study
,”
Phys. Plasmas
22
,
103706
(
2015
).
42.
A.
Gupta
,
R.
Ganesh
, and
A.
Joy
, “
Kolmogorov flow in two dimensional strongly coupled dusty plasma
,”
Phys. Plasmas
21
,
073707
(
2014
).
You do not currently have access to this content.