We study compressibility effects on the two-dimensional strongly coupled dusty plasma by means of computational fluid dynamics (CFD) with the Kolmogorov flow as an initial shear flow profile. Nonlinear compressible vortex flow dynamics and other linear and nonlinear properties of such flow in the presence of variable density, pressure, and electrostatic potential are addressed using a generalised compressible hydrodynamic model. The stabilizing effect of compressibility on the unstable shear flows in the presence of strong correlation (τm>0) is presented. Increasing the Mach number relatively reduces the growth-rate of perturbation. On the other hand, strong correlation makes the medium to be more unstable and increases the growth rate. Using an eigen value solver, various linear properties of compressible Kolmogorov flow have been investigated for a range of variable parameters, for example, Mach number, Reynolds number, and viscoelastic coefficient (τm). Compressible Kolmogorov flow becomes unstable above a critical value of the Reynolds number (Rc), and below Rc, the shear flow is found to be neutrally stable. In this study, it is found that the viscoelasticity reduces the value of Rc. For our choice of parameters, at τm=τmc, the compressible Kolmogorov flow becomes unconditionally unstable and no Rc exists for values of τm higher than τmc. To address the nonlinear properties, for example, mode-mode interaction due to the presence of nonlinearity in the fluid, vortex formation, etc., a massively parallelized Advanced Generalized SPECTral Code (AG-Spect) has been developed. AG-Spect, a newly developed code, is an efficient tool to solve any set of nonlinear fluid dynamic equations. A good agreement in linear growth rates obtained from the eigen value solver and time dependent simulation (AG-Spect) is found. In our CFD study, the suppression of instability, elongated vortex structures, pattern formation, nonlinear saturation, and visco-elastic oscillations in perturbed kinetic energy have been observed for various values of Mach number, Reynolds number and τm.

1.
N. N.
Rao
,
P. K.
Shukla
, and
M. Y.
Yu
,
Planet. Space Sci.
38
,
543
(
1990
).
2.
V. E.
Fortov
,
V. I.
Molotkov
,
A. P.
Nefedov
, and
O. F.
Petrov
, “
Liquid- and crystallike structures in strongly coupled dusty plasmas
,”
Phys. Plasmas
6
,
1759
1768
(
1999
).
3.
G. E.
Morfill
,
H. M.
Thomas
,
U.
Konopka
, and
M.
Zuzic
, “
The plasma condensation: Liquid and crystalline plasmas
,”
Phys. Plasmas
6
,
1769
1780
(
1999
).
4.
H.
Thomas
,
G. E.
Morfill
,
V.
Demmel
,
J.
Goree
,
B.
Feuerbacher
, and
D.
Möhlmann
, “
Plasma crystal: Coulomb crystallization in a dusty plasma
,”
Phys. Rev. Lett.
73
,
652
(
1994
).
5.
J. H.
Chu
and
L.
I
, “
Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas
,”
Phys. Rev. Lett.
72
,
4009
(
1994
).
6.
U.
de Angelis
, “
Dusty plasmas in fusion devices
,”
Phys. Plasmas
13
,
012514
(
2006
).
7.
V.
Nosenkol
and
J.
Goree
, “
Shear flows and shear viscosity in a two dimensional Yukawa system (dusty plasma)
,”
Phys. Rev. Lett.
93
,
155004
(
2004
).
8.
A.
Joy
and
A.
Sen
, “
Microscopic origin of shear relaxation in a model viscoelastic liquid
,”
Phys. Rev. Lett.
114
,
055002
(
2015
).
9.
H.
Ohta
and
S.
Hamaguchi
,
Phys. Rev. Lett.
84
,
6026
(
2000
).
10.
H.
Ohta
and
S.
Hamaguchi
,
Phys. Plasmas
7
,
4506
(
2000
).
11.
A.
J
and
R.
Ganesh
, “
Kelvin Helmholtz instability in strongly coupled Yukawa liquids
,”
Phys. Rev. Lett.
104
,
215003
(
2010
).
12.
S. K.
Tiwari
,
A.
Das
,
D.
Angom
,
B. G.
Patel
, and
P.
Kaw
, “
Kelvin-Helmholtz instability in a strongly coupled dusty plasma medium
,”
Phys. Plasmas
19
,
073703
(
2012
).
13.
W.-T.
Juan
,
M.-H.
Chen
, and
L.
I
, “
Nonlinear transports and microvortex excitations in sheared quasi two dimensional dust Coulomb liquids
,”
Phys. Rev. E
64
,
016402
(
2001
).
14.
Y.
Feng
,
J.
Goree
, and
B.
Liu
, “
Observation of temperature peaks due to strong viscous heating in a dusty plasma flow
,”
Phys. Rev. Lett.
109
,
185002
(
2012
).
15.
A.
Gupta
,
R.
Ganesh
, and
A.
Joy
, “
Kolmogorov flow in two dimensional strongly coupled Yukawa liquid: A molecular dynamics study
,”
Phys. Plasmas
22
,
103706
(
2015
).
16.
A.
Gupta
,
R.
Ganesh
, and
A.
Joy
, “
Compressible Kolmogorov flow in strongly coupled dusty plasma using molecular dynamics and computational fluid dynamics: A comparative study. Part II
,”
Phys. Plasmas
(to be published).
17.
E.
Thomas
and
J.
Williams
, “
Experimental measurements of velocity dissipation and neutral-drag effects during the formation of a dusty plasma
,”
Phys. Rev. Lett.
95
,
055001
(
2005
).
18.
L. D.
Meshalkin
and
Y. G.
Sinai
,
J. Appl. Math. Mech.
25
,
1700
(
1961
).
19.
C.
Marchioro
, “
An example of absence of turbulence for any Reynolds number
,”
Commun. Math. Phys.
105
,
99
106
(
1986
).
20.
Z. S.
She
, “
Metastability and vortex pairing in the Kolmogorov flow
,”
Phys. Lett. A
124
,
161
164
(
1987
).
21.
A.
Nepomniashchii
, “
On stability of secondary flows of a viscous fluid in unbounded space
,”
J. Appl. Math. Mech.
40
,
836
841
(
1976
).
22.
H.
Okamoto
and
M.
Shōji
, “
Bifurcation diagrams in Kolmogorov's problem of viscous incompressible fluid on 2-d flat tori
,”
Jpn. J. Ind. Appl. Math.
10
,
191
218
(
1993
).
23.
F.
Feudel
and
N.
Seehafer
, “
Bifurcations and pattern formation in a two-dimensional Navier-Stokes fluid
,”
Phys. Rev. E
52
,
3506
(
1995
).
24.
M. Z. G. N. F.
Bondarenko
and
F. V.
Dolzhansky
,
Izv. Akad. Nauk (Fiz. Atmos. Okeana)
15
,
1017
(
1979
).
25.
A. M.
Obukhov
, “
Kolmogorov flow and laboratory simulation of it
,”
Russ. Math. Surv.
38
,
113
(
1983
).
26.
D. H.
Kelley
and
N. T.
Ouellette
, “
Using particle tracking to measure flow instabilities in an undergraduate laboratory experiment
,”
Am. J. Phys.
79
,
267
(
2011
).
27.
J. M.
Burgess
,
C.
Bizon
,
W. D.
McCormick
,
J. B.
Swift
, and
H. L.
Swinney
, “
Instability of the Kolmogorov flow in a soap film
,”
Phys. Rev. E
60
,
715
721
(
1999
).
28.
K.
Roeller
,
J. r.
Vollmer
, and
S.
Herminghaus
, “
Unstable Kolmogorov flow in granular matter
,”
Chaos
19
,
041106
(
2009
).
29.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon, Oxford
,
1984
).
30.
I.
Bena
,
M. M.
Mansour
, and
F.
Baras
, “
Hydrodynamic fluctuations in the Kolmogorov flow: Linear regime
,”
Phys. Rev. E
59
,
5503
(
1999
).
31.
G.
Boffetta
 et.al., “
The viscoelastic Kolmogorov flow: Eddy viscosity and linear stability
,”
J. Fluid Mech.
523
,
161
(
2005
).
32.
A.
Thess
, “
Instabilities in two dimensional spatially periodic flows. Part I: Kolmogorov flow
,”
Phys. Fluids A: Fluid Dyn. (1989-1993)
4
,
1385
(
1992
).
33.
A.
Manela
and
J.
Zhang
, “
The effect of compressibility on the stability of wall-bounded Kolmogorov flow
,”
J. Fluid Mech.
694
,
29
49
(
2012
).
34.
A.
Joy
and
R.
Ganesh
, “
Coevolution of inverse cascade and nonlinear heat front in shear flows of strongly coupled Yukawa liquids
,”
Phys. Plasmas
18
,
083704
(
2011
).
35.
P. K.
Kaw
and
A.
Sen
, “
Low frequency modes in strongly coupled dusty plasmas
,”
Phys. Plasmas
5
(
10
),
3552
(
1998
).
36.
A.
Diaw
and
M. S.
Murillo
, “
Generalized hydrodynamics model for strongly coupled plasmas
,”
Phys. Rev. E
92
,
013107
(
2015
).
37.
D.
Luo
,
B.
Zhao
,
G.
Hu
,
T.
Gong
,
Y.
Xia
, and
J.
Zheng
, “
Coherent dynamic structure factors of strongly coupled plasmas: A generalized hydrodynamic approach
,”
Phys. Plasmas
23
,
052707
(
2016
).
38.
Y. I.
Frenkel
,
Kinetic Theory of Liquids
(
Clarendon
,
Oxford
,
1946
).
39.
M. A.
Berkovsky
,
Phys. Lett. A
166
,
365
368
(
1992
).
40.
M. K.
Verma
, “
Statistical theory of magnetohydrodynamic turbulence: Recent results
,”
Phys. Rep.
401
,
229
380
(
2004
).
41.
M.
Iovieno
,
C.
Cavazzoni
, and
D.
Tordella
, “
A new technique for a parallel dealiased pseudospectral Navier-Stokes code
,”
Comput. Phys. Commun.
141
,
365
374
(
2001
).
42.
G. S.
Patterson
and
S. A.
Orszag
, “
Spectral calculations of isotropic turbulence: Efficient removal of aliasing interactions
,”
Phys. Fluids (1958-1988)
14
,
2538
2541
(
1971
).
43.
E. A.
Coutsias
,
F. R.
Hansen
,
T.
Huld
,
G.
Knorr
, and
J. P.
Lynov
, “
Spectral methods in numerical plasma simulation
,”
Phys. Scr.
40
,
270
(
1989
).
44.
H. I. S.
Ichimaru
and
S.
Tanaka
,
Phys. Rev. A
35
,
4743
(
1987
).
45.
S.
Hamaguchi
,
R. T.
Farouki
, and
D. H. E.
Dubin
, “
Phase diagram of Yukawa systems near the one component plasma limit revisited
,”
J. Chem. Phys.
105
,
7641
7647
(
1996
).
46.
M.
Rosenberg
and
G.
Kalman
, “
Dust acoustic waves in strongly coupled dusty plasmas
,”
Phys. Rev. E
56
,
7166
7173
(
1997
).
47.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Clarendon
,
Oxford
,
1961
).
48.
P. J. R.
Folz
and
K. K.
Nomura
, “
Interaction of two equal co-rotating viscous vortices in the presence of background shear
,”
Fluid Dyn. Res.
46
,
031423
(
2014
).
49.
N. D.
Sandham
, “
The effect of compressibility on vortex pairing
,”
Phys. Fluids
6
,
1063
(
1994
).
You do not currently have access to this content.