The population of vibrational levels of carbon dioxide (CO2) by a cylindrical fast ionization wave is analyzed using a one-dimensional Particle-in-Cell Monte Carlo collisions model. The model takes into account the inelastic electron-neutral collisions as well as the super-elastic collisions between electrons and excited species. We observe an efficient population of only the first two levels of the symmetric and asymmetric vibrational modes of CO2 by means of a fast ionization wave. The excitation of other higher vibrational modes by the fast ionization wave is inefficient. Additionally, we observe a strong influence of the secondary electron emission on the population of vibrational states of CO2. This effect is associated with the kinetics of high energy electrons generated in the cathode sheath.

1.
See www.ipcc.ch/publicationsanddata/ar4/syr/en/contents.html for Fourth Assessment Report: Climate Change 2007 Synthesis Report, IPCC, Geneva, Switzerland,
2007
.
2.
A.
Fridman
,
Plasma Chemistry
(
Cambridge University Press
,
Cambridge
,
2008
).
3.
V. D.
Rusanov
,
A. A.
Fridman
, and
G. V.
Sholin
,
Sov. Phys.-Usp.
24
,
447
(
1981
).
4.
Y. P.
Raizer
,
Gas Discharge Physics
(
Springer
,
Berlin
,
1991
).
5.
T.
Kozak
and
A.
Bogaerts
,
Plasma Source Sci. Technol.
23
,
045004
(
2014
).
6.
L. D.
Pietanza
,
G.
Colonna
,
G.
D'Ammando
,
A.
Laricchiuta
, and
M.
Capitelli
,
Plasma Source Sci. Technol.
24
,
042002
(
2015
).
7.
G.
Colonna
,
G.
D'Ammando
, and
L. D.
Pietanza
,
Plasma Source Sci. Technol.
25
,
054001
(
2016
).
8.
M.
Capitelli
,
G.
Colonna
,
G.
D'Ammando
, and
L. D.
Pietanza
,
Plasma Source Sci. Technol.
26
,
055009
(
2017
).
9.
A.
Ozkan
,
T.
Dufour
,
T.
Silva
,
N.
Britun
,
R.
Snyders
,
F.
Reniers
, and
A.
Bogaerts
,
Plasma Source Sci. Technol.
25
,
055005
(
2016
).
10.
D.
Mei
,
Y.-L.
He
,
S.
Liu
,
J.
Yan
, and
X.
Tu
,
Plasma Processes Polym.
13
,
544
(
2016
).
11.
S.
Ponduri
,
M. M.
Becker
,
S.
Welzel
,
M. C. M.
van de Sanden
,
D.
Loffhagen
, and
R.
Engeln
,
J. Appl. Phys.
119
,
093301
(
2016
).
12.
U.
Kogelschatz
,
Plasma Chem. Plasma Process.
23
,
1
(
2003
).
13.
A.
Luque
,
V.
Ratushnaya
, and
U.
Ebert
,
J. Phys. D: Appl. Phys.
41
,
234005
(
2008
).
14.
D.
Levko
and
L. L.
Raja
,
Plasma Source Sci. Technol.
26
,
035003
(
2017
).
15.
D.
Levko
,
S.
Yatom
,
V.
Vekselman
,
J. Z.
Gleizer
,
V. T.
Gurovich
, and
Y. E.
Krasik
,
J. Appl. Phys.
111
,
013303
(
2012
).
16.
D.
Levko
and
L. L.
Raja
,
J. Appl. Phys.
119
,
153301
(
2016
).
17.
J. J.
Lowke
,
A. V.
Phelps
, and
B. W.
Irwin
,
J. Appl. Phys.
44
,
4664
(
1973
).
18.
G.
Colonna
,
V.
Laporta
,
R.
Celiberto
,
M.
Capitelli
, and
J.
Tennyson
,
Plasma Source Sci. Technol.
24
,
035004
(
2015
).
19.
20.
M.
Capitelli
,
R.
Celiberto
,
G.
Colonna
,
F.
Esposito
,
C.
Gorse
,
K.
Hassouni
,
A.
Laricchiuta
, and
S.
Long
,
Fundamental Aspects of Plasma Chemical Physics
(
Springer
,
New York
,
2016
).
You do not currently have access to this content.