In this paper, the dynamics of the electron in an elliptical bubble regime is investigated. In this regime, a high intensity laser pulse in a plasma creates an electron cavity called the blow-out (bubble or cavitation) regime which is usually considered to be in a spherical shape at rest. Through balancing the ponderomotive potential of a non-plane laser pulse and bubble electrostatic potential, the shape of the bubble is analyzed to be elliptical in contrast to most available theories which indicate the spherical bubble. Thus, the present model introduces a different dynamics for the electron compared with the spherical one. The longitudinal electric field experienced by the electron and also the electron energy gain in the elliptical model is investigated to be more than that in the spherical model. Moreover, it is found that the shape of the bubble will influence the electron trapping range so that the electron is bounded more in the spherical bubble. As a result, it is crucially important to take the shape of the bubble influence on the electron acceleration process into account. The results indicate that the distribution of the electromagnetic fields inside the bubble in the ellipse model is more close to particle-in-cell simulation compared to the spherical one [Kostyukov et al., Phys. Plasmas 11(11), 5256 (2004)].

1.
T.
Tajima
and
J. M.
Dawson
,
Phys. Rev. Lett.
43
,
267
(
1979
).
2.
S. M.
Hooker
,
Nat. Photonics
7
,
775
(
2013
).
3.
E.
Esarey
,
C. B.
Schroeder
, and
W. P.
Leemans
,
Rev. Mod. Phys.
81
,
1229
(
2009
).
4.
I.
Kostyukov
,
A.
Pukhov
, and
S.
Kiselev
,
Phys. Plasmas
11
(
11
),
5256
(
2004
).
5.
A. V.
Arefiev
,
B. N.
Breizman
,
M.
Schollmeier
, and
V. N.
Khudik
,
Phys. Rev. Lett.
108
,
145004
(
2012
).
6.
A. P. L.
Robinson
,
A. V.
Arefiev
, and
D.
Neely
,
Phys. Rev. Lett.
111
,
065002
(
2013
).
7.
A. V.
Arefiev
,
V. N.
Khudik
, and
M.
Schollmeier
,
Phys. Plasmas
21
,
033104
(
2014
).
8.
A. V.
Arefiev
,
A. P. L.
Robinson
, and
V. N.
Khudik
,
J. Plasma Phys.
81
(
4
),
475810404
(
2015
).
9.
A. V.
Arefiev
,
V. N.
Khudik
,
A. P. L.
Robinson
,
G.
Shvets
,
L.
Willingale
, and
M.
Schollmeier
,
Phys. Plasmas
23
,
056704
(
2016
).
10.
A.
Pukhov
and
J.
Meyer-ter-vehn
,
Appl. Phys. B
74
,
355
361
(
2002
).
11.
B.-S.
Xie
,
H.-C.
Wu
,
H.
Wang
,
N.-Y.
Wang
, and
M. Y.
Yu
,
Phys. Plasmas
14
,
073103
(
2007
).
12.
O.
Jansen
,
T.
Tuckmantel
, and
A.
Pukhov
,
Eur. Phys. J.: Spec. Top.
223
,
1017
1030
(
2014
).
13.
X.
Zhang
,
V. N.
Khudik
, and
G.
Shvets
,
Phys. Rev. Lett.
114
,
184801
(
2015
).
14.
A.
Pukhov
,
S.
Gordienko
,
S.
Kiselev
, and
I.
Kostyukov
,
Plasma Phys. Controlled Fusion
46
(
12B
),
179
(
2004
).
15.
A.
Kim
,
M.
Tushentsov
,
F.
Cattani
,
D.
Anderson
, and
M.
Lisak
,
Phys. Rev. E
65
,
036416
(
2002
).
16.
S.
Kawata
,
Q.
Kong
,
S.
Miyazaki
,
K.
Miyauchi
,
R.
Sonobe
,
K.
Sakai
,
K.
Nakajima
,
S.
Masuda
,
Y. K.
Ho
, and
N.
Miyanaga
,
Laser and Particle Beams
23
(01),
61
67
(
2005
).
17.
M. A.
Furman
, LBL-34682, CBP Note 014, PEP-II/AP Note 34 93,
2007
.
You do not currently have access to this content.