This paper examines a new propellant inlet mode for a low-power cylindrical Hall thruster called the vortex inlet mode. This new mode makes propellant gas diffuse in the form of a circumferential vortex in the discharge channel of the thruster. Simulation and experimental results show that the neutral gas density in the discharge channel increases upon the application of the vortex inlet mode, effectively extending the dwell time of the propellant gas in the channel. According to the experimental results, the vortex inlet increases the propellant utilization of the thruster by 3.12%–8.81%, thrust by 1.1%–53.5%, specific impulse by 1.1%–53.5%, thrust-to-power ratio by 10%–63%, and anode efficiency by 1.6%–7.3%, greatly improving the thruster performance.

1.
J.
Mueller
,
C.
Marrese
,
J.
Ziemer
,
A.
Green
,
E. H.
Yang
,
M.
Mojarradi
,
T.
Johnson
,
V.
White
,
D.
Bame
,
R.
Wirz
,
M.
Tajmar
,
V.
Hruby
,
M.
Gamero-Casta
,
J.
Schein
, and
R.
Reinicke
, “
JPL micro-thrust propulsion activities
,” AIAA Paper 2002-5714,
2002
.
2.
K. D.
Diamant
,
J. E.
Pollard
,
Y.
Raitses
, and
N. J.
Fisch
, “
Ionization, plume properties, and performance of cylindrical Hall thrusters
,”
IEEE Trans. Plasma Sci.
38
,
1052
1057
(
2010
).
3.
N. Z.
Warner
, “
Theoretical and experimental investigation of Hall thruster miniaturization
,” Ph.D. dissertation (
Massachusetts Institute of Technology
,
2007
).
4.
Y.
Raitses
and
N. J.
Fisch
, “
Parametric investigations of a nonconventional Hall thruster
,”
Phys. Plasmas
8
,
2579
(
2001
).
5.
Y.
Raitses
,
A.
Smirnov
, and
N. J.
Fisch
, “
Enhanced performance of cylindrical Hall thrusters
,”
Appl. Phys. Lett.
90
,
221502
(
2007
).
6.
A.
Smirnov
,
Y.
Raitses
, and
N. J.
Fisch
, “
Enhanced ionization in the cylindrical Hall thruster
,”
J. Appl. Phys.
94
,
852
857
(
2003
).
7.
I. D.
Boyd
,
D. B.
Van Gilder
, and
X.
Liu
, “
Monte Carlo simulation of neutral xenon flows in electric propulsion devices
,”
J. Propul. Power
14
,
1009
1015
(
1998
).
8.
R.
Cedolin
,
W.
Hargus
,
R.
Hanson
, and
M.
Cappelli
, “
Laser-induced fluorescence diagnostics for xenon Hall thrusters
,” AIAA Paper 96-2986,
1996
.
9.
B. M.
Reid
and
A. D.
Gallimore
, “
Review of Hall thruster neutral flow dynamics
,” in
30th International Electric Propulsion Conference
,
Florence
(
2007
), Paper No. IEPC-2007-038.
10.
W.
Huang
,
B.
Drenkow
, and
A.
Gallimore
, “
Laser-Induced fluorescence of singly-charged Xenon inside a 6-kW Hall thruster
,” AIAA Paper 2009-5355,
2009
.
11.
W.
Huang
,
A. D.
Gallimore
, and
R. R.
Hofer
, “
Neutral flow evolution in a six-kilowatt Hall thruster
,”
J. Propul. Power
27
,
553
563
(
2011
).
12.
B. M.
Reid
, “
The Influence of neutral flow rate in the operation of Hall thrusters
,” Ph.D. Dissertation (
University of Michigan
, Michigan,
2009
).
13.
V.
Vial
,
A.
Lazurenko
,
C.
Laure
,
A.
Bouchoule
,
O.
Cedex
, and
D.
Pagnon
, “
Xenon gas injection in SPT thrusters
,” in
28th International Electric Propulsion Conference
,
Toulouse
(
2003
), Paper No. IEPC 2003-221.
14.
V.
Kim
, “
Investigation of the anode configuration influence on the PPS-1350 laboratory model plume divergence
,” AIAA Paper 98-3787,
1998
.
15.
X.
Zhang
,
L. Q.
Wei
,
L.
Han
,
Y. J.
Ding
, and
D. R.
Yu
, “
Effect of azimuthal diversion rail on an ATON-type Hall thruster
,”
J. Phys. D: Appl. Phys.
50
,
095202
(
2017
).
16.
T.
Miyasaka
,
T.
Furukawa
,
T.
Soga
,
E.
Nakayama
,
T.
Kitagawa
, and
F. Y.
Zhang
, “
Influence of propellant-inlet condition on Hall thruster performance
,” in
28th International Electric Propulsion Conference
,
Toulouse
(
2003
), Paper No. IEPC-2003-091.
17.
Y.
Raitses
,
J.
Ashkenazy
, and
M.
Guelman
, “
Propellant utilization in Hall thrusters
,”
J. Propul. Power
14
,
247
253
(
1998
).
18.
Y. J.
Ding
,
Y.
Xu
,
W. J.
Peng
,
L. Q.
Wei
,
H. B.
Su
,
H. Z.
Sun
,
P.
Li
,
H.
Li
, and
D. R.
Yu
, “
A type of cylindrical Hall thruster with a magnetically insulated anode
,”
J. Phys. D: Appl. Phys.
50
,
145203
(
2017
).
19.
S.
Langendorf
,
K.
Xu
, and
M.
Walker
, “
Effects of wall electrodes on Hall effect thruster plasma
,”
Phys. Plasmas
22
,
023508
(
2015
).
20.
C. F.
Book
and
M. L. R.
Walker
, “
Effect of anode temperature on hall thruster performance
,”
J. Propul. Power
26
,
1036
1044
(
2010
).
21.
R. A.
Martinez
and
M. L. R.
Walker
, “
Propellant thermal management effect on neutral residence time in low-voltage hall thrusters
,”
J. Propul. Power
29
,
528
539
(
2013
).
22.
P.
Hu
,
H.
Liu
,
W.
Mao
,
D. R.
Yu
, and
Y. Y.
Gao
, “
The effects of magnetic field in plume region on the performance of multi-cusped field thruster
,”
Phys. Plasmas
22
,
103502
(
2015
).
23.
L.
Ferrario
,
J. M.
Little
, and
E. Y.
Choueiri
, “
Propulsive performance of a finite-temperature plasma flow in a magnetic nozzle with applied azimuthal current
,”
Phys. Plasma
21
,
113507
(
2014
).
You do not currently have access to this content.