Ideal magnetohydrodynamics relaxation is the topology-conserving reconfiguration of a magnetic field into a lower energy state where the net force is zero. This is achieved by modeling the plasma as perfectly conducting viscous fluid. It is an important tool for investigating plasma equilibria and is often used to study the magnetic configurations in fusion devices and astrophysical plasmas. We study the equilibrium reached by a localized magnetic field through the topology conserving relaxation of a magnetic field based on the Hopf fibration in which magnetic field lines are closed circles that are all linked with one another. Magnetic fields with this topology have recently been shown to occur in non-ideal numerical simulations. Our results show that any localized field can only attain equilibrium if there is a finite external pressure, and that for such a field a Taylor state is unattainable. We find an equilibrium plasma configuration that is characterized by a lowered pressure in a toroidal region, with field lines lying on surfaces of constant pressure. Therefore, the field is in a Grad-Shafranov equilibrium. Localized helical magnetic fields are found when plasma is ejected from astrophysical bodies and subsequently relaxes against the background plasma, as well as on earth in plasmoids generated by, e.g., a Marshall gun. This work shows under which conditions an equilibrium can be reached and identifies a toroidal depression as the characteristic feature of such a configuration.

1.
V. I.
Arnold
,
Vladimir I. Arnold-Collected Works
(
Springer
,
1974
), pp.
357
375
.
2.
H.
Moffatt
,
J. Fluid Mech.
159
,
359
(
1985
).
3.
J. B.
Taylor
,
Phys. Rev. Lett.
33
,
1139
(
1974
).
4.
L.
Woltjer
,
Proc. Natl. Acad. Sci. U.S.A.
44
,
489
(
1958
).
5.
L.
Woltjer
,
Proc. Natl. Acad. Sci. U.S.A.
44
,
833
(
1958
).
6.
L.
Woltjer
,
Proc. Natl. Acad. Sci. U.S.A.
45
,
769
(
1959
).
7.
A. R.
Yeates
,
G.
Hornig
, and
A. L.
Wilmot-Smith
,
Phys. Rev. Lett.
105
,
085002
(
2010
).
8.
H.
Moffatt
,
J. Plasma Phys.
81
,
905810608
(
2015
).
9.
C. B.
Smiet
,
S.
Candelaresi
,
A.
Thompson
,
J.
Swearngin
,
J. W.
Dalhuisen
, and
D.
Bouwmeester
,
Phys. Rev. Lett.
115
,
095001
(
2015
).
10.
H.
Hopf
,
Math. Ann.
104
,
637
(
1931
), ISSN 0025-5831.
11.
G. E.
Volovik
and
V. P.
Mineev
,
Zh. Eksp. Teor. Fiz.
73
,
767
(
1977
).
12.
Y.
Kawaguchi
,
M.
Nitta
, and
M.
Ueda
,
Phys. Rev. Lett.
100
,
180403
(
2008
).
13.
D. S.
Hall
,
M. W.
Ray
,
K.
Tiurev
,
E.
Ruokokoski
,
A. H.
Gheorghe
, and
M.
Möttönen
,
Nat. Phys.
12
,
478
483
(
2016
).
14.
A. F.
Rañada
,
Lett. Math. Phys.
18
,
97
(
1989
).
15.
W. T. M.
Irvine
and
D.
Bouwmeester
,
Nat. Phys.
4
,
716
(
2008
).
16.
A.
Thompson
,
A.
Wickes
,
J.
Swearngin
, and
D.
Bouwmeester
,
J. Phys. A: Math. Theor.
48
,
205202
(
2015
).
17.
A. M.
Kamchatnov
,
Sov. J. Exp. Theor. Phys.
82
,
117
(
1982
).
18.
R. Z.
Sagdeev
,
S. S.
Moiseev
,
A. V.
Tur
, and
V. V.
Yanovskii
, in
Nonlinear Phenomena in Plasma Physics and Hydrodynamics
(
Mir Publishers
,
Moscow
,
1986
), Vol. 1.
19.
A.
Gruzinov
, “Solitary magnetic bubbles,” preprint arXiv:1006.1368 (
2010
).
20.
J.
Braithwaite
,
Mon. Not. R. Astron. Soc.
406
,
705
(
2010
).
21.
J.
Zrake
and
W. E.
East
,
Astrophys. J.
817
,
89
(
2016
).
22.
W. H.
Bostick
,
Phys. Rev.
104
,
292
(
1956
).
23.
W. T.
Armstrong
,
D.
Barnes
,
R. I.
Bartsch
,
R.
Commisso
,
C.
Ekdahl
,
I.
Henins
,
D.
Hewett
,
H.
Hoida
, and
T.
Jarboe
, in
Proceedings of the Eight International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Brussels
(
1980
).
24.
L.
Perkins
,
S.
Ho
, and
J.
Hammer
,
Nucl. Fusion
28
,
1365
(
1988
).
25.
26.
L. F.
Burlaga
,
Physics of the Inner Heliosphere II
(
Springer
,
1991
), pp.
1
22
.
27.
A.
Kumar
and
D.
Rust
,
J. Geophys. Res., [Space Phys.]
101
,
15667
, doi: (
1996
).
28.
K.
Ivanov
and
A.
Harshiladze
,
Sol. Phys.
98
,
379
(
1985
).
29.
A.
Enciso
,
D.
Peralta-Salas
, and
F. T.
de Lizaur
,
Proc. Natl. Acad. Sci. U.S.A.
113
,
2035
(
2016
).
30.
H. K.
Moffatt
,
J. Fluid Mech.
35
,
117
(
1969
).
31.
32.
G. K.
Batchelor
, in
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
(
The Royal Society
,
1950
), Vol.
201
, pp.
405
416
.
33.
E. R.
Priest
and
T. G.
Forbes
,
Magnetic Reconnection: MHD Theory and Applications
(
Cambridge University Press
,
2000
).
34.
G.
Hornig
and
K.
Schindler
,
Phys. Plasmas
3
,
781
(
1996
).
35.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes: The Art of Scientific Computing, 3rd ed.
(
Cambridge University Press
,
2007
).
36.
D. I.
Pontin
,
G.
Hornig
,
A. L.
Wilmot-Smith
, and
I. J. D.
Craig
,
Astrophys. J.
700
,
1449
(
2009
).
37.
S.
Candelaresi
,
D. I.
Pontin
, and
G.
Hornig
,
SIAM J. Sci. Comput.
36
,
B952
(
2014
).
38.
Y.
Zhou
,
H.
Qin
,
J. W.
Burby
, and
A.
Bhattacharjee
,
Phys. Plasmas
21
,
102109
(
2014
).
39.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Courier Corporation
,
1961
).
40.
R. M.
Kulsrud
,
Plasma Physics for Astrophysics
(
Princeton University Press Princeton
,
2005
), Vol.
77
.
41.
M.
Arrayás
and
J. L.
Trueba
,
J. Phys. A: Math. Theor.
48
,
025203
(
2015
).
42.
S.
Chandrasekhar
,
Proc. Natl. Acad. Sci. U.S.A.
42
,
273
(
1956
).
43.
R.
Chodura
and
A.
Schlüter
,
J. Comput. Phys.
41
,
68
(
1981
).
44.
I. J. D.
Craig
and
A. D.
Sneyd
,
Astrophys. J.
311
,
451
(
1986
).
45.
S.
Candelaresi
,
D. I.
Pontin
, and
G.
Hornig
,
Astrophys. J.
808
,
134
(
2015
).
46.
J. M.
Hyman
and
M.
Shashkov
,
Comput. Math. Appl.
33
,
81
(
1997
).
47.
J. M.
Hyman
and
M.
Shashkov
,
J. Comput. Phys.
151
,
881
(
1999
).
48.
Y.
Chikasue
and
M.
Furukawa
,
Phys. Plasmas
22
,
022511
(
2015
).
49.
S.
Candelaresi
, See https://github.com/SimonCan/glemur for Glemur (
2015
).
50.
V. D.
Shafranov
,
Rev. Plasma Phys.
2
,
103
(
1966
).
51.
P. M.
Bellan
,
Fundamentals of Plasma Physics
(
Cambridge University Press
,
2008
).
You do not currently have access to this content.