We present hydrodynamic and magneto-hydrodynamic simulations of a liquid sodium flow using the compressible MHD code PLUTO to investigate the magnetic field regeneration in the Von-Kármán-Sodium dynamo experiment. The aim of the study is to analyze the influence of the fluid resistivity and turbulence level on the collimation by helicoidal motions of a remnant magnetic field. We use a simplified Cartesian geometry to represent the flow dynamics in the vicinity of one cavity of a multi-blades impeller inspired by those used in the Von-Kármán-Sodium (VKS) experiment. We perform numerical simulations with kinetic Reynolds numbers up to 1000 for magnetic Prandtl numbers between 30 and 0.1. Our study shows that perfect ferromagnetic walls favour enhanced collimation of flow and magnetic fields even if the turbulence degree of the model increases. More specifically, the location of the helicoidal coherent vortex in between the blades changes with the impinging velocity. It becomes closer to the upstream blade and the impeller base if the flow incident angle is analogous to the TM73 impeller configuration rotating in the unscooping direction. This result is also obtained at higher kinetic Reynolds numbers when the helicoidal vortex undergoes a precessing motion, leading to a reinforced effect in the vortex evolution and in the magnetic field collimation when using again perfect ferromagnetic boundary conditions. Configurations with different materials used for the impeller blades and the impeller base confirm a larger enhancement of the magnetic field when perfect ferromagnetic boundary conditions are used compared with the perfect conductor case, although smaller compared to a perfect ferromagnetic impeller, as it was observed in the VKS experiment. We further estimate the efficiency of a hypothetical dynamo loop occurring in the vicinity of the impeller and discuss the relevance of our findings in the context of mean field dynamo theory.

1.
J.
Aubert
, “
Geomagnetic forecasts driven by thermal wind dynamics in the Earth's core
,”
Geophys. J. Int.
203
,
1738
1751
(
2015
).
2.
R.
Beck
, “
Galactic magnetism: Recent developments and perspectives
,”
Annu. Rev. Astron. Astrophys.
34
,
155
206
(
1996
).
3.
J.
Boisson
,
S.
Aumaitre
,
N.
Bonnefoy
,
M.
Bourgoin
,
F.
Daviaud
,
B.
Dubrulle
,
P.
Odier
,
J.-F.
Pinton
,
N.
Plihon
, and
G.
Verhille
, “
Symmetry and couplings in stationary von Kármán sodium dynamos
,”
New J. Phys.
14
(
1
),
013044
(
2012
).
4.
A.
Brandenburg
and
K.
Subramanian
,
Astron. Nachr.
328
,
507
(
2007
).
5.
A. S.
Brun
,
M. S.
Miesch
, and
J.
Toomre
, “
Global-scale turbulent convection and magnetic dynamo action in the solar envelope
,”
Astrophys. J.
614
,
1073
1098
(
2004
).
6.
P. A.
Durbin
and
B. A.
Pettersson
,
Statistical theory and modeling for turbulent flows
, 2nd ed. (
John Wiley & Sons, Ltd.
,
2010
).
7.
J.
Förste
,
J. Appl. Math. Mech.
64
(
9
),
426
426
(
1984
).
8.
A.
Gailitis
,
O.
Lielausis
,
S.
Dement'ev
,
E.
Platacis
,
A.
Cifersons
,
G.
Gerbeth
,
T.
Gundrum
,
F.
Stefani
,
M.
Christen
,
H.
Hänel
, and
G.
Will
, “
Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility
,”
Phys. Rev. Lett.
84
,
4365
4368
(
2000
).
9.
A.
Giesecke
,
F.
Stefani
, and
G.
Gerbeth
, “
Role of soft-iron impellers on the mode selection in the von Kármán sodium dynamo experiment
,”
Phys. Rev. Lett.
104
,
044503
(
2010
).
10.
C. J. P.
Gissinger
, “
A numerical model of the VKS experiment
,”
Europhys. Lett.
87
,
39002
(
2009
).
11.
F.
Krause
and
K.-H.
Rädler
,
Mean-Field Magnetohydrodynamics and Dynamo Theory
(
Pergamon Press
,
1980
).
12.
S.
Kreuzahler
,
D.
Schulz
,
H.
Homann
,
Y.
Ponty
, and
R.
Grauer
, “
Numerical study of impeller-driven von Kármán flows via a volume penalization method
,”
New J. Phys.
16
(
10
),
103001
(
2014
).
13.
R.
Laguerre
,
C.
Nore
,
A.
Ribeiro
,
J.
Léorat
,
J.-L.
Guermond
, and
F.
Plunian
, “
Impact of impellers on the axisymmetric magnetic mode in the VKS2 dynamo experiment
,”
Phys. Rev. Lett.
101
,
104501
(
2008
).
14.
C.
Meneveau
and
J.
Katz
, “
Scale-invariance and turbulence models for large-eddy simulation
,”
Annu. Rev. Fluid Mech.
32
,
1
32
(
2000
).
15.
A.
Mignone
,
G.
Bodo
,
S.
Massaglia
,
T.
Matsakos
,
O.
Tesileanu
,
C.
Zanni
, and
A.
Ferrari
, “
PLUTO: A numerical code for computational astrophysics
,”
Astrophys. J.
170
,
228
242
(
2007
).
16.
S.
Miralles
,
N.
Bonnefoy
,
M.
Bourgoin
,
P.
Odier
,
J.-F.
Pinton
,
N.
Plihon
,
G.
Verhille
,
J.
Boisson
,
F.
Daviaud
, and
B.
Dubrulle
, “
Dynamo threshold detection in the von Kármán sodium experiment
,”
Phys. Rev. E
88
,
013002
(
2013
).
17.
H. K.
Moffatt
,
Magnetic Field Generation in Electrically Conducting Fluids
(
Cambridge University Press
,
1983
), p.
353
.
18.
R.
Monchaux
,
M.
Berhanu
,
S.
Aumaitre
,
A.
Chiffaudel
,
F.
Daviaud
,
B.
Dubrulle
,
F.
Ravelet
,
S.
Fauve
,
N.
Mordant
,
F.
Pétrélis
,
M.
Bourgoin
,
P.
Odier
,
J.-F.
Pinton
,
N.
Plihon
, and
R.
Volk
, “
The von Kármán sodium experiment: Turbulent dynamical dynamos
,”
Phys. Fluids
21
(
3
),
035108
(
2009
).
19.
R.
Monchaux
,
M.
Berhanu
,
M.
Bourgoin
,
M.
Moulin
,
P.
Odier
,
J.-F.
Pinton
,
R.
Volk
,
S.
Fauve
,
N.
Mordant
,
F.
Pétrélis
,
A.
Chiffaudel
,
F.
Daviaud
,
B.
Dubrulle
,
C.
Gasquet
,
L.
Marié
, and
F.
Ravelet
, “
Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium
,”
Phys. Rev. Lett.
98
(
4
),
044502
(
2007
).
20.
H.-C.
Nataf
,
T.
Alboussière
,
D.
Brito
,
P.
Cardin
,
N.
Gagnière
,
D.
Jault
,
J.-P.
Masson
, and
D.
Schmitt
, “
Experimental study of super-rotation in a magnetostrophic spherical Couette flow
,”
Geophys. Astrophys. Fluid Dyn.
100
,
281
298
(
2006
).
21.
C.
Nore
,
D.
Castanon Quiroz
,
L.
Cappanera
, and
J.-L.
Guermond
,
Europhys. Lett.
114
,
65002
(
2016
).
22.
C.
Nore
,
J.
Léorat
,
J.-L.
Guermond
, and
A.
Giesecke
, “
Mean-field model of the von Kármán sodium dynamo experiment using soft iron impellers
,”
Phys. Rev. E
91
,
013008
(
2015
).
23.
M.
Ossendrijver
, “
The solar dynamo
,”
Astron. Astrophys. Rev.
11
,
287
367
(
2003
).
24.
F.
Pétrélis
,
N.
Mordant
, and
S.
Fauve
, “
On the magnetic fields generated by experimental dynamos
,”
Geophys. Astrophys. Fluid Dyn.
101
(
3–4
),
289
323
(
2007
).
25.
K.-H.
Rädler
and
M.
Rheinhardt
, “
Mean-field electrodynamics: critical analysis of various analytical approaches to the mean electromotive force
,”
Geophys. Astrophys. Fluid Dyn.
101
,
117
154
(
2007
).
26.
K.-H.
Räedler
, “
Mean-field approach to spherical dynamo models
,”
Astron. Nachr.
301
,
101
129
(
1980
).
27.
F.
Ravelet
,
B.
Dubrulle
,
F.
Daviaud
, and
P.-A.
Ratié
, “
Kinematic α tensors and dynamo mechanisms in a von Kármán swirling flow
,”
Phys. Rev. Lett.
109
,
024503
(
2012
).
28.
F.
Ravelet
, “
Toward an experimental von Kármán dynamo: Numerical studies for an optimized design
,”
Phys. Fluids
17
,
117104
(
2005
).
29.
R.
Stieglitz
and
U.
Müller
, “
Experimental demonstration of a homogeneous two-scale dynamo
,”
Phys. Fluids
13
(
3
),
561
564
(
2001
).
30.
J.
Varela
,
S.
Brun
,
B.
Dubrulle
, and
C.
Nore
, “
Role of boundary conditions in helicoidal flow collimation: Consequences for the von Kármán sodium dynamo experiment
,”
Phys. Rev. E
92
,
063015
(
2015
).
31.
G.
Verhille
,
N.
Plihon
,
M.
Bourgoin
,
P.
Odier
, and
J.-F.
Pinton
, “
Induction in a von Kármán flow driven by ferromagnetic impellers
,”
New J. Phys.
12
(
3
),
033006
(
2010
).
You do not currently have access to this content.