The theoretical study of a step-tunable gyrotron controlled by successive excitation of multi-harmonic modes is presented in this paper. An axis-encircling electron beam is employed to eliminate the harmonic mode competition. Physics images are depicted to elaborate the multi-harmonic interaction mechanism in determining the operating parameters at which arbitrary harmonic tuning can be realized by magnetic field sweeping to achieve controlled multiband frequencies' radiation. An important principle is revealed that a weak coupling coefficient under a high-harmonic interaction can be compensated by a high Q-factor. To some extent, the complementation between the high Q-factor and weak coupling coefficient makes the high-harmonic mode potential to achieve high efficiency. Based on a previous optimized magnetic cusp gun, the multi-harmonic step-tunable gyrotron is feasible by using harmonic tuning of first-to-fourth harmonic modes. Multimode simulation shows that the multi-harmonic gyrotron can operate on the 34 GHz first-harmonic TE11 mode, 54 GHz second-harmonic TE21 mode, 74 GHz third-harmonic TE31 mode, and 94 GHz fourth-harmonic TE41 mode, corresponding to peak efficiencies of 28.6%, 35.7%, 17.1%, and 11.4%, respectively. The multi-harmonic step-tunable gyrotron provides new possibilities in millimeter–terahertz source development especially for advanced terahertz applications.

1.
2.
G. S.
Nusinovich
,
M. K. A.
Thumm
, and
M. I.
Petelin
,
J. Infrared, Millimeter, Terahertz Waves
35
,
325
(
2014
).
3.
J. H.
Booske
,
R. J.
Dobbs
,
C. D.
Joye
,
C. L.
Kory
,
G. R.
Neil
,
G. S.
Park
,
J.
Park
, and
R. J.
Temkin
,
IEEE Trans. Terahertz Sci. Technol.
1
,
54
(
2011
).
4.
G. L.
Carr
,
M. C.
Martin
,
W. R.
McKinney
,
K.
Jordan
,
G. R.
Neil
, and
G. P.
Williams
,
Nature
420
,
153
(
2002
).
5.
Y. J.
Ding
,
IEEE J. Sel. Top. Quantum Electron.
13
,
705
(
2007
).
6.
C. S.
Kou
,
C. H.
Chen
, and
T. J.
Wu
,
Phys. Rev. E
57
,
7162
(
1998
).
7.
T. H.
Chang
,
C. T.
Fan
,
K. F.
Pao
,
K. R.
Chu
, and
S. H.
Chen
,
Appl. Phys. Lett.
90
,
191501
(
2007
).
8.
N. C.
Chen
,
C. F.
Yu
,
C. P.
Yuan
, and
T. H.
Chang
,
Appl. Phys. Lett.
94
,
101501
(
2009
).
9.
T. H.
Chang
,
T.
Idehara
,
I.
Ogawa
,
L.
Agusu
, and
S.
Kobayashi
,
J. Appl. Phys.
105
,
063304
(
2009
).
10.
W.
He
,
C. R.
Donaldson
,
L.
Zhang
,
K.
Ronald
,
P.
McElhinney
, and
A. W.
Cross
,
Phys. Rev. Lett.
110
,
165101
(
2013
).
11.
C. H.
Du
,
X. B.
Qi
,
L. B.
Kong
,
P. K.
Liu
,
Z. D.
Li
,
S. X.
Xu
,
Z. H.
Geng
, and
L.
Xiao
,
IEEE Trans. Terahertz Sci. Technol.
5
,
236
(
2015
).
12.
X. B.
Qi
,
C. H.
Du
, and
P.-K.
Liu
,
IEEE Trans. Electron Devices
62
,
4278
(
2015
).
13.
O.
Dumbrajs
and
B.
Plosczyk
,
Int. J. Electron.
68
,
885
(
1990
).
14.
O.
Dumbrajs
and
G. S.
Nusinovich
,
IEEE Trans. Plasma Sci.
20
,
452
(
1992
).
15.
G. S.
Nusinovich
and
M. E.
Read
,
IEEE Trans. Plasma Sci.
27
,
355
(
1999
).
16.
K. E.
Kreischer
and
R. J.
Temkin
,
Phys. Rev. Lett.
59
,
547
(
1987
).
17.
T. L.
Grimm
,
K. E.
Kreischer
, and
R. J.
Temkin
,
Phys. Fluids B
5
,
4135
(
1993
).
18.
O.
Braz
,
G.
Dammertz
,
M.
Kuntze
, and
M.
Thumm
,
J. Infrared, Millimeter, Terahertz Waves
18
,
1465
(
1997
).
19.
O.
Dumbrajs
,
V. I.
Khizhnyak
,
A. B.
Pavelyev
,
B.
Piosczyk
, and
M. K.
Thumm
,
IEEE Trans. Plasma Sci.
28
,
681
(
2000
).
20.
M.
Thumm
,
A.
Arnold
,
E.
Borie
,
O.
Braz
,
G.
Dammertz
,
O.
Dumbrajs
,
K.
Koppenburg
,
M.
Kuntze
,
G.
Michel
, and
B.
Piosczyk
,
Fusion Eng. Des.
53
,
407
(
2001
).
21.
G.
Gantenbein
,
A.
Samartsev
,
G.
Aiello
,
G.
Dammertz
,
J.
Jelonnek
,
M.
Losert
,
A.
Schlaich
,
T. A.
Scherer
,
D.
Strauss
,
M.
Thumm
, and
D.
Wagner
,
IEEE Trans. Electron Devices
61
,
1806
(
2014
).
22.
K.
Koppenburg
,
G.
Dammertz
,
M.
Kuntze
,
B.
Piosczyk
, and
M.
Thumm
,
IEEE Trans. Electron Devices
48
,
101
(
2001
).
23.
A.
Samartsev
,
K. A.
Avramidis
,
G.
Gantenbein
,
G.
Dammertz
,
M.
Thumm
, and
J.
Jelonnek
,
IEEE Trans. Electron Devices
62
,
2327
(
2015
).
24.
V. E.
Zapevalov
,
A. A.
Bogdashov
,
G. G.
Denisov
,
A. N.
Kuftin
,
V. K.
Lygin
,
M. A.
Moiseev
, and
A. V.
Chirkov
,
Radiophys. Quantum Electron.
47
,
396
(
2004
).
25.
D.
Wagner
,
F.
Leuterer
,
A.
Manini
,
F.
Monaco
,
M.
Munich
,
F.
Ryter
,
H.
Schutz
,
H.
Zohm
,
T.
Franke
,
R.
Heidinger
,
M.
Thumm
,
W.
Kasparek
,
G.
Gantenbein
,
A. G.
Litvak
,
L. G.
Popov
,
V. O.
Nichiporenko
,
V. E.
Myasnikov
,
G. G.
Denisov
,
E. M.
Tai
,
E. A.
Solyanova
, and
S. A.
Malygin
,
Int. J. Infrared Millimeter Waves
27
,
173
(
2006
).
26.
T.
Idehara
,
T.
Tatsukawa
,
H.
Tanabe
,
S.
Matsumoto
,
K.
Kunieda
,
K.
Hemmi
, and
T.
Kanemaki
,
Phys. Fluids B
3
,
1766
(
1991
).
27.
T.
Idehara
,
T.
Tatsukawa
,
I.
Ogawa
,
H.
Tanabe
,
T.
Mori
,
S.
Wada
,
G. F.
Brand
, and
M. H.
Brennan
,
Phys. Fluids B
4
,
267
(
1992
).
28.
K. D.
Hong
,
G. F.
Brand
, and
T.
Idehara
,
J. Appl. Phys.
74
,
5250
(
1993
).
29.
Y.
Tatematsu
,
Y.
Yamaguchi
,
R.
Ichioka
,
M.
Kotera
,
T.
Saito
, and
T.
Idehara
,
J. Infrared, Millimeter, Terahertz Waves
36
,
697
(
2015
).
30.
M. Y.
Glyavin
and
A. G.
Luchinin
,
Radiophys. Quantum Electron.
50
,
755
(
2007
).
31.
M. Y.
Glyavin
,
A. G.
Luchinin
, and
G. Y.
Golubiatnikov
,
Phys. Rev. Lett.
100
,
015101
(
2008
).
32.
T.
Idehara
,
H.
Tsuchiya
,
O.
Watanabe
,
L.
Agusu
, and
S.
Mitsudo
,
Int. J. Infrared Millimeter Waves
27
,
319
(
2006
).
33.
T.
Idehara
,
T.
Saito
,
H.
Mori
,
H.
Tsuchiya
,
L.
Agusu
, and
S.
Mitsudo
,
Int. J. Infrared Millimeter Waves
29
,
131
(
2008
).
34.
C. H.
Du
,
X. B.
Qi
,
B. L.
Hao
,
T. H.
Chang
, and
P. K.
Liu
,
IEEE Electron Device Lett.
36
,
960
(
2015
).
35.
X. B.
Qi
,
C. H.
Du
, and
P. K.
Liu
,
IEEE Trans. Electron Devices
62
,
3399
(
2015
).
36.
T. C.
Luce
,
IEEE Trans. Plasma Sci.
30
,
734
(
2002
).
37.
V.
Erckmann
,
G.
Dammertz
,
D.
Dorst
,
L.
Empacher
,
W.
Förster
,
G.
Gantenbein
,
T.
Geist
,
W.
Kasparek
,
H. P.
Laqua
,
G. A.
Müller
,
M.
Thumm
,
M.
Weissgerber
,
H.
Wobig
,
W7-X and W7-AS Teams at IPP Garching
,
W7-X Team at FZK Karlsruhe
, and
W7-X Team at IPF Stuttgart
,
IEEE Trans. Plasma Sci.
27
,
538
(
1999
).
38.
M.
Thumm
,
Int. J. Infrared Millimeter Waves
22
,
377
(
2001
).
39.
S.
LeVine
, “
The active denial system: A revolutionary, nonlethal weapon for today's battlefield
,”
Technical Report No. 0704-0188
, Center for Technology and National Security Policy (National Defense University, Washington, DC,
2009
), see http://s3.amazonaws.com/academia.edu.documents/40935918/ADA501865.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1487759275&Signature=TOaxG2n7a7fTZkBgT%2BH0%2BWwwBD4%3D&response-content-disposition=inline%3B%20filename%3DADA501865.pdf.
40.
Y.
Bykov
,
A.
Eremeev
,
M.
Glyavin
,
V.
Kholoptsev
,
A.
Luchinin
,
I.
Plotnikov
,
G.
Denisov
,
A.
Bogdashev
,
G.
Kalynova
,
V.
Semenov
, and
N.
Zharova
,
IEEE Trans. Plasma Sci.
32
,
67
(
2004
).
41.
N.
Kumar
,
U.
Singh
,
T. P.
Singh
, and
A. K.
Sinha
,
J. Fusion Energy
30
,
257
(
2011
).
42.
C. H.
Du
,
X. B.
Qi
,
P. K.
Liu
,
T. H.
Chang
,
S. X.
Xu
,
Z. H.
Geng
,
B. L.
Hao
,
L.
Xiao
,
G. F.
Liu
,
Z. D.
Li
,
S. H.
Shi
, and
H.
Wang
,
IEEE Trans. Electron Devices
61
,
1781
(
2014
).
43.
C. H.
Du
and
P. K.
Liu
,
J. Infrared, Millimeter, Terahertz Waves
31
,
714
(
2010
).
You do not currently have access to this content.