Dielectric laser-driven accelerators (DLAs) based on grating structures are considered to be one of the most promising technologies to reduce the size and cost of future particle accelerators. They offer high accelerating gradients of up to several GV/m in combination with mature lithographic techniques for structure fabrication. This paper numerically investigates the beam quality for acceleration of electrons in a realistic dual-grating DLA. In our simulations, we use beam parameters of the future Compact Linear Accelerator for Research and Applications facility to load an electron bunch into an optimized 100-period dual-grating structure where it interacts with a realistic laser pulse. The emittance, energy spread, and loaded accelerating gradient for modulated electrons are then analyzed in detail. Results from simulations show that an accelerating gradient of up to 1.13 ± 0.15 GV/m with an extremely small emittance growth, 3.6%, can be expected.

1.
J.
Norem
,
V.
Wu
,
A.
Moretti
,
M.
Popovic
,
Z.
Qian
,
L.
Ducas
,
Y.
Torun
, and
N.
Solomey
,
Phys. Rev. Spec. Top. Accel. Beams
6
,
072001
(
2003
).
2.
A.
Moretti
,
Z.
Qian
,
J.
Norem
,
Y.
Torun
,
D.
Li
, and
M.
Zisman
,
Phys. Rev. Spec. Top. Accel. Beams
8
,
072001
(
2005
).
3.
M. R.
Jana
,
M.
Chung
,
M.
Leonova
,
A.
Moretti
,
A.
Tollestrup
, and
K.
Yonehara
, in
Proceedings of PAC2013, Pasadena
, CA, USA, p.
WEPMA12
.
4.
T.
Plettner
,
P. P.
Lu
, and
R. L.
Byer
,
Phys. Rev. Spec. Top. Accel. Beams
9
,
111301
(
2006
).
5.
A.
Aimidula
,
M. A.
Bake
,
F.
Wan
,
B. S.
Xie
,
C. P.
Welsch
,
G.
Xia
,
O.
Mete
,
M.
Uesaka
,
Y.
Matsumura
,
M.
Yoshida
, and
K.
Koyama
,
Phys. Plasmas
21
,
023110
(
2014
).
6.
A.
Aimidula
,
C. P.
Welsch
,
G.
Xia
,
K.
Koyama
,
M.
Uesaka
,
M.
Yoshida
,
O.
Mete
, and
Y.
Matsumura
,
Nucl. Instrum. Methods Phys. Res., Sect. A
740
,
108
(
2014
).
7.
C. M.
Chang
and
O.
Solgaard
,
Appl. Phys. Lett.
104
,
184102
(
2014
).
8.
X. E.
Lin
,
Phys. Rev. Spec. Top. Accel. Beams
4
,
051301
(
2001
).
9.
V.
Reboud
,
J.
Romero-Vivas
,
P.
Lovera
,
N.
Kehagias
,
T.
Kehoe
,
G.
Redmond
, and
C. M. S.
Torres
, “
Lasing in nanoimprinted two-dimensional photonic crystal band-edge lasers
,”
Appl. Phys. Lett.
102
,
073101
(
2013
).
10.
B. M.
Cowan
,
Phys. Rev. Spec. Top. Accel. Beams
6
,
101301
(
2003
).
11.
Z.
Wu
,
R. J.
England
,
C. K.
Ng
,
B.
Cowan
,
C.
McGuinness
,
C.
Lee
,
M.
Qi
, and
S.
Tantawi
,
Phys. Rev. Spec. Top. Accel. Beams
17
,
081301
(
2014
).
12.
T.
Plettner
and
R. L.
Byer
,
Phys. Rev. Spec. Top. Accel. Beams
11
,
030704
(
2008
).
13.
K.
Soong
and
R. L.
Byer
,
Opt. Lett.
37
,
975
977
(
2012
).
14.
T.
Plettner
,
R. L.
Byer
,
C.
McGuinness
, and
P.
Hommelhoff
,
Phys. Rev. Spec. Top. Accel. Beams
12
,
101302
(
2009
).
15.
E. A.
Peralta
,
K.
Soong
,
R. J.
England
,
E. R.
Colby
,
Z.
Wu
,
B.
Montazeri
,
C.
McGuinness
,
J.
McNeur
,
K. J.
Leedle
,
D.
Walz
,
E. B.
Sozer
,
B.
Cowan
,
B.
Schwartz
,
G.
Travish
, and
R. L.
Byer
,
Nature
503
,
91
(
2013
).
16.
K. P.
Wootton
,
Z.
Wu
,
B. M.
Cowan
,
A.
Hanuka
,
I. V.
Makasyuk
,
E. A.
Peralta
,
K.
Soong
,
R. L.
Byer
, and
R. J.
England
,
Opt. Lett.
41
,
2696
2699
(
2016
).
17.
J.
Breuer
and
P.
Hommelhoff
,
Phys. Rev. Lett.
111
,
134803
(
2013
).
18.
K. J.
Leedle
,
R. F.
Pease
,
R. L.
Byer
, and
J. S.
Harris
,
Optica
2
,
158
(
2015
).
19.
K. J.
Leedle
,
A.
Ceballos
,
H.
Deng
,
O.
Solgaard
,
R. F.
Pease
,
R. L.
Byer
, and
J. S.
Harris
,
Opt. Lett.
40
,
4344
4347
(
2015
).
20.
Y.
Wei
,
C. P.
Welsch
,
G.
Xia
,
O.
Mete
,
K.
Hanahoe
, and
J. D. A.
Smith
, in
Proceedings of the IPAC2015, Richmond
, VA, USA, p.
WEPWA051
.
21.
B.
Montazeri Najafabadi
,
R. L.
Byer
,
C. K.
Ng
,
R. J.
England
,
E. A.
Peralta
,
K.
Soong
,
R.
Noble
, and
Z.
Wu
,
AIP Conf. Proc.
1507
,
476
(
2012
).
22.
J. A.
Clarke
,
D.
Angal-Kalinin
,
N.
Bliss
,
R.
Buckley
,
S.
Buckley
,
R.
Cash
,
P.
Corlett
,
L.
Cowie
,
G.
Cox
,
G. P.
Diakun
,
D. J.
Dunning
,
B. D.
Fell
,
A.
Gallagher
,
P.
Goudket
,
A. R.
Goulden
,
D. M. P.
Holland
,
S. P.
Jamison
,
J. K.
Jones
,
A. S.
Kalinin
,
W.
Liggins
,
L.
Ma
,
K. B.
Marinov
,
B.
Martlew
,
P. A.
McIntosh
,
J. W.
McKenzie
,
K. J.
Middleman
,
B. L.
Militsyn
,
A. J.
Moss
,
B. D.
Muratori
,
M. D.
Roper
,
R.
Santer
,
Y.
Saveliev
,
E.
Snedden
,
R. J.
Smith
,
S. L.
Smith
,
M.
Surman
,
T.
Thakker
,
N. R.
Thompson
,
R.
Valizadeh
,
A. E.
Wheelhouse
,
P. H.
Williams
,
R.
Bartolini
,
I.
Martin
,
R.
Barlow
,
A.
Kolano
,
G.
Burt
,
S.
Chattopadhyay
,
D.
Newton
,
A.
Wolski
,
R. B.
Appleby
,
H. L.
Owen
,
M.
Serluca
,
G.
Xia
,
S.
Boogert
,
A.
Lyapin
,
L.
Campbell
,
B. W. J.
McNeil
, and
V. V.
Paramonov
,
J. Instrum.
9
,
T05001
(
2014
).
23.
R. B.
Palmer
,
Part. Accel.
11
,
81
90
(
1980
); available at http://cds.cern.ch/record/1107986/files/p81.pdf.
24.
D. M.
Pai
and
K. A.
Awada
,
Opt. Soc. Am. A
8
,
755
762
(
1991
).
25.
J.
Breuer
,
J.
McNeur
, and
P.
Hommelhoff
,
J. Phys. B: At. Mol. Opt. Phys.
47
,
234004
(
2014
).
26.
E. A.
Peralta
, “
Accelerator on a chip: Design, fabrication, and demonstration of grating-based dielectric microstructures for laser-driven acceleration of electrons
,” Ph.D. thesis (
Stanford University
,
2015
).
28.
T.
Plettner
,
R. L.
Byer
, and
B.
Montazeri
,
J. Mod. Opt.
58
,
1518
(
2011
).
29.
R.
Kitamura
,
L.
Pilon
, and
M.
Jonasz
,
Appl. Opt.
46
,
8118
(
2007
).
30.
R. J.
England
,
R. J.
Noble
,
K.
Bane
,
D. H.
Dowell
,
C.-K.
Ng
,
J. E.
Spencer
,
S.
Tantawi
,
Z.
Wu
,
R. L.
Byer
,
E.
Peralta
,
K.
Soong
,
C.
Chang
,
B.
Montazeri
,
S. J.
Wolf
,
B.
Cowan
,
J.
Dawson
,
W.
Gai
,
P.
Hommelhoff
,
Y.
Huang
,
C.
Jing
,
C.
McGuinness
,
R. B.
Palmer
,
B.
Naranjo
,
J.
Rosenzweig
,
G.
Travish
,
A.
Mizrahi
,
L.
Schachter
,
C.
Sears
,
G. R.
Werner
, and
R. B.
Yoder
,
Rev. Mod. Phys.
86
,
1337
(
2014
).
31.
M.
Lenzner
,
J.
Krüger
,
S.
Sartania
,
Z.
Cheng
,
Ch.
Spielmann
,
G.
Mourou
,
W.
Kautek
, and
F.
Krausz
,
Phys. Rev. Lett.
80
,
4076
(
1998
).
32.
K.
Soong
,
R. L.
Byer
,
C.
McGuinness
,
E.
Peralta
, and
E.
Colby
, in
Proceedings of 2011 Particle Accelerator Conference (PAC2011)
(
IEEE
,
New York, USA
,
2011
), p.
MOP095
.
33.
C.
Warner
 III
and
F.
Rohrlich
,
Phys. Rev.
93
(
3
),
406
(
1954
).
You do not currently have access to this content.