Alfvén eigenmodes may be important in driving fast particle transport in magnetic confinement fusion devices, with potentially deleterious results. To explain and predict this behaviour, numerical simulations are necessary. In order to predict transport, modes must be simulated through to their nonlinear saturated state. In this work, the first simulations of non-linear wave-particle interaction between an energetic particle population and a Toroidal Alfvén Eigenmode are performed in which fluctuations responding self-consistently to modification of the fast particle profile are calculated with gyrokinetic treatment of all plasma species. Results from two such gyrokinetic codes are compared with new results from non-perturbative and perturbative fluid-gyrokinetic hybrid codes. There is a power-law relationship between the saturated magnetic perturbation amplitude, δB∕B0, and the linear mode growth rate, γL. All models show a transition from a higher to a lower exponent regime with increasing γL. Measured values of the higher exponent from different codes fall in a range between 1.45 and 1.79, while the lower exponent falls in a range between 0.47 and 0.79. There is a consistent difference of 1.0 between the higher and lower exponents independent of the model. The absolute level of saturated δB∕B0 is determined by the damping rate. In the fluid-gyrokinetic hybrid codes, an ad-hoc damping is applied, while in the gyrokinetic case the measured damping is consistent with the estimated rate of physical electron Landau damping.

1.
A.
Fasoli
,
C.
Gormenzano
,
H. L.
Berk
,
B.
Breizman
,
S.
Briguglio
,
D. S.
Darrow
,
N.
Gorelenkov
,
W. W.
Heidbrink
,
A.
Jaun
,
S. V.
Konovalov
,
R.
Nazikian
,
J.-M.
Noterdaeme
,
S.
Sharapov
,
K.
Shinohara
,
D.
Testa
,
K.
Tobita
,
Y.
Todo
,
G.
Vlad
, and
F.
Zonca
,
Nucl. Fusion
47
,
S264
(
2007
).
2.
C. Z.
Cheng
,
L.
Chen
, and
M. S.
Chance
,
Ann. Phys.
161
,
21
(
1985
).
3.
L.
Chen
and
F.
Zonca
,
Nucl. Fusion
47
,
S727
(
2007
).
4.
E. A.
Frieman
and
L.
Chen
,
Phys. Fluids
25
,
502
(
1982
).
5.
A. J.
Brizard
and
T. S.
Hahm
,
Rev. Mod. Phys.
79
,
421
(
2007
).
6.
P.
Lauber
,
S.
Günter
,
A.
Könies
, and
S. D.
Pinches
,
J. Comput. Phys.
226
,
447
(
2007
).
7.
G.
Jost
,
T. M.
Tran
,
W. A.
Cooper
,
L.
Villard
, and
K.
Appert
,
Phys. Plasmas
8
,
3321
(
2001
).
8.
V.
Kornilov
,
R.
Kleiber
,
R.
Hatzky
,
L.
Villard
, and
G.
Jost
,
Phys. Plasmas
11
,
3196
(
2004
).
9.
S.
Jolliet
,
A.
Bottino
,
P.
Angelino
,
R.
Hatzky
,
T. M.
Tran
,
B. F.
McMillan
,
O.
Sauter
,
K.
Appert
,
Y.
Idomura
, and
L.
Villard
,
Comput. Phys. Commun.
177
,
409
(
2007
).
10.
A.
Bottino
and
E.
Sonnendrücker
,
J. Plasma Phys.
81
,
435810501
(
2015
).
11.
A.
Biancalani
,
A.
Bottino
,
S.
Briguglio
,
A.
Könies
,
P.
Lauber
,
A.
Mishchenko
,
E.
Poli
,
B. D.
Scott
, and
F.
Zonca
,
Phys. Plasmas
23
,
012108
(
2016
).
12.
M. D. J.
Cole
,
A.
Mishchenko
,
A.
Könies
,
R.
Kleiber
, and
M.
Borchardt
,
Phys. Plasmas
21
,
072123
(
2014
).
13.
M. D. J.
Cole
,
A.
Mishchenko
,
A.
Könies
,
R.
Hatzky
, and
R.
Kleiber
,
Plasma Phys. Controlled Fusion
57
,
054013
(
2015
).
14.
T.
Fehér
, Ph.D. thesis, Universität Greifswald, Germany,
2014
.
15.
Y.
Chen
and
S.
Parker
,
Phys. Plasmas
8
,
441
(
2001
).
16.
Z.
Lin
and
L.
Chen
,
Phys. Plasmas
8
,
1447
(
2001
).
17.
X.
Wang
,
S.
Briguglio
,
L.
Chen
,
C. D.
Troia
,
G.
Fogaccia
,
G.
Vlad
, and
F.
Zonca
,
Phys. Plasmas
18
,
052504
(
2011
).
18.
N. N.
Gorelenkov
,
C. Z.
Cheng
, and
G. Y.
Fu
,
Phys. Plasmas.
6
,
2802
(
1999
).
19.
A.
Könies
,
A.
Mishchenko
, and
R.
Hatzky
, in
Theory of Fusion Plasmas
(
AIP Conference Proceedings
2008
), p.
133
.
20.
D.
Spong
,
E.
D'Azevedo
, and
Y.
Todo
,
Contrib. Plasma Phys.
50
,
708
(
2010
).
21.
W. A.
Cooper
,
Plasma Phys. Controlled Fusion
53
,
024001
(
2011
).
22.
A.
Mishchenko
,
M.
Cole
,
R.
Kleiber
, and
A.
Könies
,
Phys. Plasmas
21
,
052113
(
2014
).
23.
A.
Mishchenko
,
A.
Könies
,
R.
Kleiber
, and
M.
Cole
,
Phys. Plasmas
21
,
092110
(
2014
).
24.
P.
Helander
and
D. J.
Sigmar
,
Collisional Transport in Magnetized Plasmas
(
Cambridge University Press
,
United Kingdom
,
2002
).
25.
J. M.
Garcia-Regana
,
R.
Kleiber
,
C. D.
Beidler
,
Y.
Turkin
,
H.
Maassberg
, and
P.
Helander
,
Plasma Phys. Controlled Fusion
55
,
074008
(
2013
).
26.
A.
Könies
,
S.
Briguglio
,
N.
Gorelenkov
,
T.
Fehér
,
M.
Isaev
,
P.
Lauber
,
A.
Mishchenko
,
D. A.
Spong
,
Y.
Todo
,
W. A.
Cooper
,
R.
Hatzky
,
R.
Kleiber
,
M.
Borchardt
,
G.
Vlad
, and
ITPA EP TG
, in
Proceedings of the 24th IAEA Fusion Energy Conference ITR/P1
(
2012
).
27.
R.
Kleiber
,
R.
Hatzky
,
A.
Könies
,
A.
Mishchenko
, and
E.
Sonnendrücker
,
Phys. Plasmas
23
,
032501
(
2016
).
28.
R.
Hatzky
,
A.
Könies
, and
A.
Mishchenko
, in
Proceedings of the Joint Varenna-Lausanne International Workshop
(
2004
), p.
13
.
29.
R.
Hatzky
,
A.
Könies
, and
A.
Mishchenko
,
J. Comput. Phys.
225
,
568
(
2007
).
30.
A.
Mishchenko
,
A.
Könies
, and
R.
Hatzky
,
Phys. Plasmas
16
,
082105
(
2009
).
31.
S. P.
Hirshman
,
U.
Schwenn
, and
J.
Nuehrenberg
,
J. Comput. Phys.
87
,
396
(
1990
).
32.
Y.
Todo
,
M. A. V.
Zeeland
,
A.
Bierwage
, and
W. W.
Heidbrink
,
Nucl. Fusion
54
,
104012
(
2014
).
33.
A.
Könies
, CKA-EUTERPE: A non-linear three-dimensional kinetic MHD code (unpublished).
34.
G. Y.
Fu
and
J. W. V.
Dam
,
Phys. Fluids B
1
,
1949
(
1989
).
35.
S.
Briguglio
,
X.
Wang
,
F.
Zonca
,
G.
Vlad
,
G.
Fogaccia
,
C. D.
Troia
, and
V.
Fusco
,
Phys. Plasmas
21
,
112301
(
2014
).
36.
A.
Biancalani
,
A.
Bottino
,
M.
Cole
,
C. D.
Troia
,
P.
Lauber
,
A.
Mishchenko
,
B. D.
Scott
, and
F.
Zonca
, “Nonlinear interplay of Alfvén instabilities and energetic particles in tokamaks,”
Plasma Phys. Controlled Fusion
(submitted).
37.
H. L.
Berk
and
B. N.
Breizman
,
Phys. Fluids B
2
,
2226
(
1990
).
38.
H. L.
Berk
,
B. N.
Breizman
, and
M.
Pekker
,
Phys. Rev. Lett.
76
,
1256
(
1996
).
39.
H. L.
Berk
,
B. N.
Breizman
, and
N. V.
Petiashvili
,
Phys. Lett. A
234
,
213
(
1997
).
40.
F.
Zonca
,
L.
Chen
,
S.
Briguglio
,
G.
Fogaccia
,
G.
Vlad
, and
X.
Wang
,
New J. Phys
17
,
013052
(
2015
).
You do not currently have access to this content.