While well established for larger gaps, Paschen's law (PL) fails to accurately predict breakdown for microscale gaps, where field emission becomes important. This deviation from PL is characterized by the absence of a minimum breakdown voltage as a function of the product of pressure and gap distance, which has been demonstrated analytically for microscale and smaller gaps with no secondary emission at atmospheric pressure [A. M. Loveless and A. L. Garner, IEEE Trans. Plasma Sci. 45, 574–583 (2017)]. We extend these previous results by deriving analytic expressions that incorporate the nonzero secondary emission coefficient, γSE, that are valid for gap distances larger than those at which quantum effects become important (∼100 nm) while remaining below those at which streamers arise. We demonstrate the validity of this model by benchmarking to particle-in-cell simulations with γSE = 0 and comparing numerical results to an experiment with argon, while additionally predicting a minimum voltage that was masked by fixing the gap pressure in previous analyses. Incorporating γSE demonstrates the smooth transition from field emission dominated breakdown to the classical PL once the combination of electric field, pressure, and gap distance satisfies the conventional criterion for the Townsend avalanche; however, such a condition generally requires supra-atmospheric pressures for breakdown at the microscale. Therefore, this study provides a single universal breakdown theory for any gas at any pressure dominated by field emission or Townsend avalanche to guide engineers in avoiding breakdown when designing microscale and larger devices, or inducing breakdown for generating microplasmas.

1.
D. C.
Abeysinghe
,
S.
Dasgupta
,
J. T.
Boyd
, and
H. E.
Jackson
, “
A novel MEMS pressure sensor fabricated on an optical fiber
,”
IEEE Photonics Technol. Lett.
13
,
993
995
(
2001
).
2.
A. G. P.
Kottapalli
,
M.
Asadnia
,
J. M.
Miao
,
G.
Barbastathis
, and
M. S.
Triantafyllou
, “
A flexible liquid crystal polymer MEMS pressure sensor array for fish-like underwater sensing
,”
Smart Mater. Stuct.
21
,
115030
(
2012
).
3.
R.
Mahamud
and
T. L.
Farouk
, “
Ion kinetics and self pulsing in DC microplasma discharges at atmospheric and higher pressures
,”
J. Phys. D: Appl. Phys.
49
,
145202
(
2016
).
4.
T.
Handa
and
Y.
Minamitani
, “
The effect of a water-droplet spray and gas discharge in water treatment by pulsed power
,”
IEEE Trans. Plasma Sci.
37
,
179
183
(
2009
).
5.
C. Y.
Chang
,
M.
Sasaki
,
S.
Kumagai
, and
G. J.
Wang
, “
Design of microplasma electrodes for plasma-on-chip devices
,”
J. Phys. D: Appl. Phys.
49
,
155203
(
2016
).
6.
W. P.
Wright
and
P.
Ferrer
, “
Electric micropropulsion systems
,”
Prog. Aero. Sci.
74
,
48
61
(
2015
).
7.
S. S.
Tholeti
,
G.
Shivkumar
, and
A. A.
Alexeenko
, “
Field emission microplasma actuation for microchannel flows
,”
J. Phys. D: Appl. Phys.
49
,
215203
(
2016
).
8.
F.
Paschen
, “
Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdiffenrenz
,”
Ann. Phys.
273
,
69
96
(
1889
).
9.
Y. Y.
Lau
,
Y.
Liu
, and
R. K.
Parker
, “
Electron emission: From the Fowler-Nordheim relation to the Child-Langmuir law
,”
Phys. Plasmas
1
,
2082
2085
(
1994
).
10.
D. B.
Go
and
A.
Venkattraman
, “
Microscale gas breakdown: Ion-enhanced field emission and the modified Paschen's curve
,”
J. Phys. D: Appl. Phys.
47
,
503001
(
2014
).
11.
W. S.
Boyle
and
P.
Kisliuk
, “
Departure from Paschen's law of breakdown in gases
,”
Phys. Rev.
97
,
255
259
(
1955
).
12.
R. H.
Fowler
and
L.
Nordheim
, “
Electron emission in intense electric fields
,”
Proc. R. Soc. London, Ser. A
119
,
173
181
(
1928
).
13.
M.
Radmilović-Radjenović
,
B.
Radjenović
,
S.
Matejčik
, and
M.
Klas
, “
The breakdown phenomena in micrometer scale direct-current gas discharges
,”
Plasma Chem. Plasma Process.
34
,
55
64
(
2014
).
14.
M.
Radmilović-Radjenović
and
B.
Radjenović
, “
An analytical relation describing the dramatic reduction of the breakdown voltage for the microgap devices
,”
Europhys. Lett.
83
,
25001
(
2008
).
15.
M.
Radmilović-Radjenović
and
B.
Radjenović
, “
The influence of ion-enhanced field emission of the high-frequency breakdown in microgaps
,”
Plasma Sources Sci. Technol.
16
,
337
340
(
2007
).
16.
R. S.
Dhariwal
,
J. M.
Torres
, and
M. P. Y.
Desmulliez
, “
Electric field breakdown at micrometer separations in air and nitrogen at atmospheric pressure
,”
IEEE Proc. Sci. Meas. Technol.
147
,
261
265
(
2000
).
17.
M. A.
Bilici
,
J. R.
Haase
,
C. R.
Boyle
,
D. B.
Go
, and
R. M.
Sankaran
, “
The smooth transition from field emission to a self-sustained plasma in microscale electrode gaps at atmospheric pressure
,”
J. Appl. Phys.
119
,
223301
(
2016
).
18.
M.
Klas
,
M.
Radmilovic-Radjenovic
,
B.
Radjenovic
,
M.
Stan
, and
S.
Matejcik
, “
Transport parameters and breakdown voltage characteristics of dry air and its constituents
,”
Nucl. Instrum. Methods B
279
,
96
99
(
2012
).
19.
E.
Hourdakis
,
B. J.
Simonds
, and
N. M.
Zimmerman
, “
Submicron gap capacitor for measurement of breakdown voltage in air
,”
Rev. Sci. Instrum.
77
,
034702
(
2006
).
20.
A. M.
Loveless
and
A. L.
Garner
, “
Scaling laws for gas breakdown for nanoscale to microscale gaps at atmospheric pressure
,”
Appl. Phys. Lett.
108
,
234103
(
2016
).
21.
A.
Venkattraman
and
A. A.
Alexeenko
, “
Scaling law for direct current field emission-driven microscale gas breakdown
,”
Phys. Plasmas
19
,
123515
(
2012
).
22.
D. B.
Go
and
D. A.
Pohlman
, “
A mathematical model of the modified Paschen's curve for breakdown in microscale gaps
,”
J. Appl. Phys.
107
,
103303
(
2010
).
23.
R. T.
Tirumala
and
D. B.
Go
, “
An analytical formulation for the modified Paschen's curve
,”
Appl. Phys. Lett.
97
,
151502
(
2010
).
24.
J. M.
Torres
and
R. S.
Dhariwal
, “
Electric field breakdown at micrometer separations
,”
Nanotechnology
10
,
102
107
(
1999
).
25.
M.
Radmilovic-Radjenovic
,
J. K.
Lee
,
F.
Iza
, and
G. Y.
Park
, “
Particle-in-cell simulation of gas breakdown in microgaps
,”
J. Phys. D: Appl. Phys.
38
,
950
954
(
2005
).
26.
C. H.
Chen
,
J. A.
Yeh
, and
P. J.
Wang
, “
Electrical breakdown phenomena for devices with micron separations
,”
J. Micromech. Microeng.
16
,
1366
1373
(
2006
).
27.
A.
Venkattraman
,
A.
Garg
,
D.
Peroulis
, and
A. A.
Alexeenko
, “
Direct measurements and numerical simulations of gas charging in microelectromechanical system capacitive switches
,”
Appl. Phys. Lett.
100
,
083503
(
2012
).
28.
C.
Montijn
and
U.
Ebert
, “
Diffusion correction to the Raether—Meek criterion for the avalanche-to-streamer transition
,”
J. Phys. D: Appl. Phys.
39
,
2979
2992
(
2006
).
29.
L. B.
Loeb
and
J. M.
Meek
,
Mechanism of Electric Spark
(
Stanford University Press
,
Stanford, CA
,
1941
).
30.
A. M.
Loveless
and
A. L.
Garner
, “
Generalization of microdischarge scaling laws for all gases at atmospheric pressure
,”
IEEE Trans. Plasma Sci.
45
,
574
583
(
2017
).
31.
T.
Taguchi
and
T. M.
Antonsen
, Jr.
, “
Resonant heating of a cluster plasma by intense laser light
,”
Phys. Rev. Lett.
92
,
205003
(
2004
).
32.
C. D.
Child
, “
Discharge from hot CaO
,”
Phys. Rev. (Series I)
32
,
492
511
(
1911
).
33.
I.
Langmuir
, “
The effect of space charge and residual gases on thermionic currents in high vacuum
,”
Phys. Rev.
2
,
450
486
(
1913
).
34.
M. S.
Benilov
, “
Collision-dominated to collisionless electron-free space-charge sheath in a plasma with variable ion temperature
,”
Phys. Plasmas
7
,
4403
4411
(
2000
).
35.
M. S.
Benilov
, “
The Child-Langmuir law and analytical theory of collisionless to collision-dominated sheaths
,”
Plasma Sources Sci. Technol.
18
,
014005
(
2009
).
36.
B.
Ragan-Kelley
,
J.
Verboncoeur
, and
Y.
Feng
, “
Two-dimensional axisymmetric Child-Langmuir scaling law
,”
Phys. Plasmas
16
,
103102
(
2009
).
37.
K. L.
Jensen
, “
Electron emission theory and its application: Fowler-Nordheim equation and beyond
,”
J. Vac. Sci. Technol., B
21
,
1528
1544
(
2003
).
38.
L. K.
Warne
,
R. E.
Jorgenson
, and
S. D.
Nicolaysen
, “
Ionization coefficient approach to modeling breakdown in nonuniform geometries
,”
Report No. SAND2003-4078
, Sandia National Laboratories, Albuquerque, NM, and Livermore, CA (
2003
).
39.
Y. P.
Raizer
,
Gas Discharge Physics
(
Springer-Verlag
,
New York
,
1991
).
40.
L. H. G.
Huxley
,
R. W.
Crompton
, and
M. T.
Elford
, “
Use of the parameter E/N
,”
Brit. J. Appl. Phys.
17
,
1237
1238
(
1966
).
41.
Y. I.
Davydov
, “
On the first Townsend coefficient at high electric field
,”
IEEE Trans. Nucl. Sci.
53
,
2931
2935
(
2006
).
42.
L.
Friedland
, “
Electron multiplication in a gas discharge at high values of E/P
,”
J. Phys. D: Appl. Phys.
7
,
2246
2253
(
1974
).
43.
Y.
Li
,
R.
Tirumala
,
P.
Rumbach
, and
D.
Go
, “
The coupling of ion-enhanced field emission and the discharge during microscale breakdown at moderately high pressures
,”
IEEE Trans. Plasma Sci.
41
,
24
35
(
2013
).
44.
D.
Marić
,
M.
Radmilović-Radjenović
, and
Z. Lj.
Petrović
, “
On parametrization and mixture laws for electron ionization coefficients
,”
Eur. Phys. J. D
35
,
313
321
(
2005
).
45.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Material Processing
, 3rd ed. (
John Wiley & Sons Inc
.,
Hoboken
,
2005
).
46.
A. V.
Phelps
, “
Cold–cathode discharges and breakdown in argon: Surface and gas phase production of secondary electrons
,”
Plasma Sources Sci. Technol.
8
,
R21
R44
(
1999
).
47.
Y.
Li
and
D.
Go
, “
The quantum mechanics of ion-enhanced field emission and how it influences microscale gas breakdown
,”
J. Appl. Phys.
116
,
103306
(
2014
).
48.
P.
Baille
,
J. S.
Chang
,
A.
Claude
,
R. M.
Hobson
,
G. L.
Ogram
, and
A. W.
Yau
, “
Effective collision frequency of electrons in noble gases
,”
J. Phys. B: At. Mol. Phys.
14
,
1485
1495
(
1981
).
49.
P. G.
Slade
and
E. D.
Taylor
, “
Electrical breakdown in atmospheric air between closely spaces (0.2 μm—40 μm) electrical contacts
,”
IEEE Trans. Compon. Packag. Technol.
25
,
390
396
(
2002
).
50.
J. P.
Verboncoeur
,
M. V.
Alves
,
V.
Vahedi
, and
C. K.
Birdsall
, “
Simultaneous potential and circuit solution for 1D bounded plasma particle simulation codes
,”
J. Comput. Phys.
104
,
321
328
(
1993
).
51.
A.
Venkattraman
, “
Particle simulations of ion generation and transport in microelectromechanical systems and microthrusters
,” Ph.D. dissertation (
Department of Aeronautical Engineering, Purdue University
,
West Lafayette, IN
,
2012
).
52.
T.
Ito
,
T.
Izaki
, and
K.
Terashima
, “
Application of microscale plasma to material processing
,”
Thin Solid Films
386
,
300
304
(
2001
).
53.
D. S.
Roveri
,
G. M.
Sant'Anna
,
H. H.
Bertan
,
J. F.
Mologni
,
M. A. R.
Alves
, and
E. S.
Braga
, “
Simulation of the enhancement factor from an individual 3D hemisphere-on-post field emitter by using finite elements method
,”
Ultramicroscopy
160
,
247
251
(
2016
).
54.
R.
Miller
,
Y. Y.
Lau
, and
J. H.
Booske
, “
Electric field distribution on knife-edge field emitters
,”
Appl. Phys. Lett.
91
,
074105
(
2007
).
55.
Y.
Feng
,
J. P.
Verboncoeur
, and
M. C.
Lin
, “
Solution for space charge limited field emission current densities with injection velocity and geometric effects corrections
,”
Phys. Plasmas
15
,
043301
(
2008
).
56.
W.
Li
and
D. Y.
Li
, “
On the correlation between surface roughness and work function in copper
,”
J. Chem. Phys.
122
,
064708
(
2005
).
57.
V. P.
Nagorny
and
P. J.
Drallos
, “
Effective secondary emission coefficient in a high-pressure noble gas
,”
Plasma Sources Sci. Technol.
6
,
212
219
(
1997
).
58.
K.
Torfason
,
A.
Valfells
, and
A.
Manolescu
, “
Molecular dynamics simulations of field emission from a prolate spheroidal tip
,”
Phys. Plasmas
23
,
123119
(
2016
).
59.
O.
Farish
,
O. E.
Ibrahim
, and
B. H.
Crichton
, “
Effect of electrode surface roughness on breakdown in nitrogen/SF6 mixtures
,”
Proc. IEE
123
,
1047
1050
(
1976
).
60.
I.
Ursu
,
I.
Apostol
,
D.
Craciun
,
M.
Dinescu
,
I. N.
Mihailescu
,
L.
Nistor
,
A.
Popa
,
V. S.
Teodorescu
,
A. M.
Prokhorov
,
N. I.
Chapliev
, and
V. I.
Konov
, “
On the influence of surface condition on air plasma formation near metals irradiated by microsecond TEA CO2 laser pulses
,”
J. Phys. D: Appl. Phys.
17
,
709
720
(
1984
).
61.
T.
Asokan
and
T. S.
Sudarshan
, “
Dependence of the surface flashover properties of alumina on polishing abrasive parameters
,”
IEEE Trans. Electr. Insul.
28
,
535
544
(
1993
).
You do not currently have access to this content.