The metallic vapours (i.e., copper, iron, and silver in this paper) resulting from walls and/or electrode surfaces can significantly affect the characteristics of air plasma. Different from the previous works assuming local thermodynamic equilibrium, this paper investigates the influence of metallic vapours on two-temperature (2 T) air plasma. The 2 T compositions of air contaminated by Cu, Fe, and Ag are first determined based on Saha's and Guldberg–Waage's laws. The thermodynamic properties (including mass density, specific enthalpy, and specific heat) are then calculated according to their definitions. After determining the collision integrals for each pair of species in air-metal mixtures using the newly published methods and source data, the transport coefficients (including electrical conductivity, viscosity, and thermal conductivity) are calculated for air-Cu, air-Fe, and air-Ag plasmas with different non-equilibrium degree θ (Te/Th). The influences of metallic contamination as well as non-equilibrium degree are discussed. It is found that copper, iron, and silver exist mainly in the form of Cu2, FeO, and AgO at low temperatures. Generally, the metallic vapours increase mass density at most temperatures, reduce the specific enthalpy and specific heat in the whole temperature range, and affect the transport properties remarkably from 5000 K to 20 000 K. The effect arising from the type of metals is little except for silver at certain temperatures. Besides, the departure from thermal equilibrium results in the delay of dissociation and ionization reactions, leading to the shift of thermodynamic and transport properties towards a higher temperature.

1.
A. B.
Murphy
,
J. Phys. D: Appl. Phys.
43
,
434001
(
2010
).
2.
J. M.
Yos
, “
Transport properties of nitrogen, hydrogen, oxygen, and air to 30,000 K
,” Technical Memorandum No. RAD-TM-63-7 (
1963
).
3.
R. S.
Devoto
,
U. H.
Bauder
,
J.
Cailleteau
, and
E.
Shires
,
Phys. Fluids
21
,
552
(
1978
).
4.
J.
Bacri
and
S.
Raffanel
,
Plasma Chem. Plasma Process.
9
,
133
154
(
1989
).
5.
A. B.
Murphy
,
Plasma Chem. Plasma Process.
15
,
279
308
(
1995
).
6.
M.
Capitelli
,
C.
Gorse
, and
S.
Longo
,
J. Thermophys. Heat Transfer
14
,
259
268
(
2000
).
7.
M.
Capitelli
,
G.
Colonna
,
C.
Gorse
, and
A.
D'Angola
,
Eur. Phys. J. D
11
,
279
289
(
2000
).
8.
A.
D'Angola
,
G.
Cononna
,
C.
Gorse
, and
M.
Capitelli
,
Eur. Phys. J. D
46
,
129
150
(
2008
).
9.
Y.
Cressault
,
R.
Hannachi
,
Ph.
Teulet
,
A.
Gleizes
,
J.-P.
Gonnet
, and
J.-Y.
Battandier
,
Plasma Sources Sci. Technol.
17
,
035016
(
2008
).
10.
Y.
Cressault
and
A.
Gleizes
,
J. Phys. D: Appl. Phys.
43
,
434006
(
2010
).
11.
Y.
Cressault
,
A.
Gleizes
, and
G.
Riquel
,
J. Phys. D: Appl. Phys.
45
,
265202
(
2012
).
12.
Ph.
Teulet
,
J. J.
Gonzalez
,
A.
Mercado-Cabrera
,
Y.
Cressault
, and
A.
Gleizes
,
J. Phys. D: Appl. Phys.
42
,
175201
(
2009
).
13.
Ph.
Teulet
,
J. J.
Gonzalez
,
A.
Mercado-Cabrera
,
Y.
Cressault
, and
A.
Gleizes
,
J. Phys. D: Appl. Phys.
42
,
185207
(
2009
).
14.
W.
Wang
,
M.
Rong
,
Y.
Wu
,
J. W.
Spencer
,
J. D.
Yan
, and
D.
Mei
,
Phys. Plasmas
19
,
083506
(
2012
).
15.
V.
Colombo
,
E.
Ghedini
, and
P.
Sanibondi
,
Plasma Sources Sci. Technol.
20
,
035003
(
2011
).
16.
R. S.
Devoto
,
Phys. Fluids
10
,
2105
(
1967
).
17.
V.
Rat
,
P.
André
,
J.
Aubreton
,
M. F.
Elchinger
,
P.
Fauchais
, and
A.
Lefort
,
Phys. Rev. E
64
,
026409
(
2001
).
18.
V.
Rat
,
J.
Aubreton
,
M. F.
Elchinger
,
P.
Fauchais
, and
A. B.
Murphy
,
Phys. Rev. E
66
,
056407
(
2002
).
19.
S.
Ghorui
,
J. V. R.
Heberlein
, and
E.
Pfender
,
Plasma Chem. Plasma Process.
28
,
553
582
(
2008
).
20.
M.
Rong
,
L.
Zhong
,
Y.
Cressault
,
A.
Gleizes
,
X.
Wang
,
F.
Chen
, and
H.
Zheng
,
J. Phys. D: Appl. Phys.
47
,
495202
(
2014
).
21.
L.
Zhong
,
A.
Yang
,
X.
Wang
,
D.
Liu
,
Y.
Wu
, and
M.
Rong
,
Phys. Plasmas
21
,
053506
(
2014
).
22.
M. I.
Boulos
,
P.
Fauchais
, and
E.
Pfender
,
Thermal Plasmas: Fundamentals and Applications
(
Plenum Press
,
New York
,
1994
), Vol.
1
, pp.
225
234
.
23.
A. V.
Potapov
,
High Temp.
4
,
48
(
1966
).
24.
M. C. M.
van de Sanden
,
P. P. J. M.
Schram
,
A. G.
Peeters
,
J. A. M.
Van der Mullen
, and
G. M. W.
Kroesen
,
Phys. Rev. A
40
,
5273
(
1989
).
25.
A.
Gleizes
,
B.
Chervy
, and
J. J.
Gonzalez
,
J. Phys. D: Appl. Phys.
32
,
2060
2067
(
1999
).
26.
V.
Colombo
,
E.
Ghedini
, and
P.
Sanibondi
,
J. Phys. D: Appl. Phys.
42
,
055213
(
2009
).
27.
A.
Kramida
,
Yu.
Ralchenko
,
J.
Reader
, and
NIST ASD Team
,
NIST Atomic Spectra Database (Version 5.3)
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2015
).
28.
M. W.
Chase
and
C. J.
Davies
,
NIST-JANAF Thermochemical Tables
, 4th ed. (
American Institute of Physics for the National Institute of Standards and Technology
,
New York
,
1998
).
29.
X.
Wang
,
L.
Zhong
,
Y.
Cressault
,
A.
Gleizes
, and
M.
Rong
,
J. Phys. D: Appl. Phys.
47
,
495201
(
2014
).
30.
L.
Zhong
,
X.
Wang
,
M.
Rong
,
Y.
Wu
, and
A. B.
Murphy
,
Phys. Plasmas
21
,
103506
(
2014
).
31.
R. S.
Devoto
,
J. Plasma Phys.
2
,
617
631
(
1968
).
32.
P.
André
,
W.
Bussiere
, and
D.
Rochette
,
Plasma Chem. Plasma Process.
27
,
381
(
2007
).
33.
A.
Laricchiuta
,
G.
Colonna
,
D.
Bruno
,
R.
Celiberto
,
C.
Gorse
,
F.
Pirani
, and
M.
Capitelli
,
Chem. Phys. Lett.
445
,
133
(
2007
).
34.
M.
Capitelli
,
D.
Cappelletti
,
G.
Colonna
,
C.
Gorse
,
A.
Laricchiuta
,
G.
Liuti
,
S.
Longo
, and
F.
Pirani
,
Chem. Phys.
338
,
62
(
2007
).
35.
A. B.
Murphy
,
Plasma Chem. Plasma Process.
20
,
279
297
(
2000
).
36.
A. B.
Murphy
,
Chem. Phys.
398
,
64
72
(
2012
).
37.
A.
Aubreton
and
M.-F.
Elchinger
,
J. Phys. D: Appl. Phys.
36
,
1798
1805
(
2003
).
38.
F. B. M.
Copeland
and
D. S. F.
Crothers
,
At. Data Nucl. Data Tables
65
,
273
288
(
1997
).
39.
C.
Bonnefoi
, “
Contribution à l'étude des méthodes de résolution de l'équation de Boltzmann dans un plasma à deux températures: exemple le mélange argon-hydrogène
,” Ph.D. thesis,
University of Limoges
, France, 1983.
40.
A. B.
Murphy
and
C. J.
Arundelli
,
Plasma Chem. Plasma Process.
14
,
451
490
(
1994
).
41.
X.
Chen
and
H.-P.
Li
,
Int. J. Heat Mass Transfer
46
,
1443
1454
(
2003
).
42.
J. N.
Butler
and
R. S.
Brokaw
,
J. Chem. Phys.
26
,
1636
(
1957
).
43.
V.
Rat
,
P.
André
,
J.
Aubreton
,
M. F.
Elchinger
,
P.
Fauchais
, and
D.
Vacher
,
J. Phys. D: Appl. Phys.
35
,
981
991
(
2002
).
44.
V.
Colombo
,
E.
Ghedini
, and
P.
Sanibondi
,
Prog. Nucl. Energy
50
,
921
933
(
2008
).
You do not currently have access to this content.