Numerical MHD simulations are used to gain insight into how sawteeth are affected by three-dimensional shaping from the Compact Toroidal Hybrid (CTH) stellarator field. CTH is a small stellarator-tokamak hybrid and sawteeth are sometimes seen on soft x-ray signals when operating with tokamak like profiles. We use NIMROD to compute numerical solutions having repeated sawtooth relaxations for a sequence of configurations with increasing helical stellarator field strength. The experimentally observed trend of the sawtooth period decreasing as the helical field strength is increased is recovered in the simulations. Careful attention to numerical convergence was required to obtain the results, and these considerations may be relevant to simulations of other phenomena in devices with non-axisymmetric plasmas such as perturbed tokamaks, RFPs, and stellarators.

1.
B. B.
Kadomtsev
, “
Disruptive instability in tokamaks
,”
Sov. J. Plasma Phys.
1
,
389
391
(
1975
).
2.
G. A.
Müller
,
V.
Erckmann
,
H. J.
Hartfuß
,
H.
Laqua
,
H.
Maassberg
,
M.
Rome
,
U.
Stroth
,
A.
Weller
,
W VII-AS Team
, and
ECRH group
, “
Shear modification by ECCD and related confinement phenomena in W7-AS
,”
AIP Conf. Proc.
355
,
133
(
1996
).
3.
M.
Wakatani
and
S.
Sudo
, “
Overview of Heliotron E results
,”
Plasma Phys. Controlled Fusion
38
(
7
),
937
(
1996
).
4.
S. E.
Grebenshchikov
,
B. I.
Kornev
, and
I. S.
Shpigel'
, “
Soft x-ray sawtooth oscillations in the L-2 stellarator
,”
Sov. J. Plasma Phys.
8
(
3
),
256
260
(
1982
).
5.
J. D.
Hanson
,
S. F.
Knowlton
,
B. A.
Stevenson
, and
G. J.
Hartwell
, “
Equilibrium and stability of current-carrying discharges in the non-axisymmetric CTH experiment
,”
Contrib. Plasma Phys.
50
(
8
),
724
730
(
2010
).
6.
M. D.
Pandya
,
M. C.
ArchMiller
,
M. R.
Cianciosa
,
D. A.
Ennis
,
J. D.
Hanson
,
G. J.
Hartwell
,
J. D.
Hebert
,
J. L.
Herfindal
,
S. F.
Knowlton
,
X.
Ma
,
S.
Massidda
,
D. A.
Maurer
,
N. A.
Roberds
, and
P. J.
Traverso
, “
Low edge safety factor operation and passive disruption avoidance in current carrying plasmas by the addition of stellarator rotational transform
,”
Phys. Plasmas
22
(
11
),
110702
(
2015
).
7.
M. C.
ArchMiller
,
M. R.
Cianciosa
,
D. A.
Ennis
,
J. D.
Hanson
,
G. J.
Hartwell
,
J. D.
Hebert
,
J. L.
Herfindal
,
S. F.
Knowlton
,
X.
Ma
,
D. A.
Maurer
 et al., “
Suppression of vertical instability in elongated current-carrying plasmas by applying stellarator rotational transform
,”
Phys. Plasmas
21
(
5
),
056113
(
2014
).
8.
K.
McGuire
and
D. C.
Robinson
, “
Sawtooth oscillations in a small tokamak
,”
Nucl. Fusion
19
(
4
),
505
507
(
1979
).
9.
H.
Reimerdes
,
A.
Pochelon
,
O.
Sauter
,
T. P.
Goodman
,
M. A.
Henderson
, and
An.
Martynov
, “
Effect of triangularity and elongated plasma shape on the sawtooth stability
,”
Plasma Phys. Controlled Fusion
42
(
6
),
629
639
(
2000
).
10.
A.
Pochelon
,
F.
Hofmann
,
H.
Reimerdes
,
C.
Angioni
,
R.
Behn
,
R.
Duquerroy
,
I.
Furno
,
P.
Gomez
,
T. P.
Goodman
,
M. A.
Henderson
,
An.
Martynov
,
P.
Nikkola
,
O.
Sauter
, and
A.
Sushkov
, “
Plasma shape effects on sawtooth/internal kink stability and plasma shaping using electron cyclotron wave current profile tailoring in TCV
,”
Nucl. Fusion
41
(
11
),
1663
1669
(
2001
).
11.
E. A.
Lazarus
,
F. L.
Waelbroeck
,
T. C.
Luce
,
M. E.
Austin
,
K. H.
Burrell
,
J. R.
Ferron
,
A. W.
Hyatt
,
T. H.
Osborne
,
M. S.
Chu
,
D. P.
Brennan
 et al., “
A comparison of sawtooth oscillations in bean and oval shaped plasmas
,”
Plasma Phys. Controlled Fusion
48
(
8
),
L65
L72
(
2006
).
12.
M.
Wakatani
,
H.
Shirai
,
H.
Zushi
,
H.
Kaneko
,
O.
Motojima
,
T.
Obiki
,
A.
Iiyoshi
, and
K.
Uo
, “
Numerical studies of internal disruptions in Heliotron E
,”
Nucl. Fusion
23
(
12
),
1669
(
1983
).
13.
M.
Wakatani
, “
Non-linear calculation of the m = 1 internal kink instability in current-carrying stellarators
,”
Nucl. Fusion
18
(
11
),
1499
(
1978
).
14.
A.
Sykes
and
J. A.
Wesson
, “
Relaxation instability in tokamaks
,”
Phys. Rev. Lett.
37
(
3
),
140
143
(
1976
).
15.
R. E.
Denton
,
J. F.
Drake
, and
R. G.
Kleva
, “
The m = 1 convection cell and sawteeth in tokamaks
,”
Phys. Fluids
30
(
5
),
1448
1451
(
1987
).
16.
G.
Vlad
and
A.
Bondeson
, “
Numerical simulations of sawteeth in tokamaks
,”
Nucl. Fusion
29
(
7
),
1139
1152
(
1989
).
17.
W.
Park
and
D. A.
Monticello
, “
Sawtooth oscillations in tokamaks
,”
Nucl. Fusion
30
(
11
),
2413
2418
(
1990
).
18.
A. Y.
Aydemir
, “
Nonlinear studies of m = 1 modes in high-temperature plasmas
,”
Phys. Fluids B: Plasma Phys.
4
(
11
),
3469
3472
(
1992
).
19.
F. D.
Halpern
,
H.
Lütjens
, and
J-F
Luciani
, “
Diamagnetic thresholds for sawtooth cycling in tokamak plasmas
,”
Phys. Plasmas
18
(
10
),
102501
(
2011
).
20.
C. R.
Sovinec
,
A. H.
Glasser
,
T. A.
Gianakon
,
D. C.
Barnes
,
R. A.
Nebel
,
S. E.
Kruger
,
D. D.
Schnack
,
S. J.
Plimpton
,
A.
Tarditi
,
M. S.
Chu
, and
the NIMROD Team
, “
Nonlinear magnetohydrodynamics simulation using high-order finite elements
,”
J. Comput. Phys.
195
(
1
),
355
386
(
2004
).
21.
M. G.
Schlutt
,
C. C.
Hegna
,
C. R.
Sovinec
,
S. F.
Knowlton
, and
J. D.
Hebert
, “
Numerical simulation of current evolution in the Compact Toroidal Hybrid
,”
Nucl. Fusion
52
(
10
),
103023
(
2012
).
22.
J. A.
Breslau
,
C. R.
Sovinec
, and
S. C.
Jardin
, “
An improved tokamak sawtooth benchmark for 3D nonlinear MHD
,”
Commun. Comput. Phys.
4
(
3
),
647
658
(
2008
).
23.
E. J.
Caramana
, “
Derivation of implicit difference schemes by the method of differential approximation
,”
J. Comput. Phys.
96
(
2
),
484
493
(
1991
).
24.
K.
Lerbinger
and
J. F.
Luciani
, “
A new semi-implicit method for MHD computations
,”
J. Comput. Phys.
97
(
2
),
444
459
(
1991
).
25.
D. D.
Schnack
,
D. C.
Barnes
,
Z.
Mikic
,
D. S.
Harned
, and
E. J.
Caramana
, “
Semi-implicit magnetohydrodynamic calculations
,”
J. Comput. Phys.
70
(
2
),
330
354
(
1987
).
26.
S. P.
Hirshman
and
J. C.
Whitson
, “
Steepest-descent moment method for three-dimensional magnetohydrodynamic equilibria
,”
Phys. Fluids
26
(
12
),
3553
3568
(
1983
).
27.
F. D.
Halpern
,
D.
Leblond
,
H.
Lütjens
, and
J-F
Luciani
, “
Oscillation regimes of the internal kink mode in tokamak plasmas
,”
Plasma Phys. Controlled Fusion
53
(
1
),
015011
(
2011
).
28.
S. C.
Jardin
,
N.
Ferraro
, and
I.
Krebs
, “
Self-organized stationary states of tokamaks
,”
Phys. Rev. Lett.
115
(
21
),
215001
(
2015
).
29.
D. A.
Spong
, “
3D toroidal physics: Testing the boundaries of symmetry breaking
,”
Phys. Plasmas
22
(
5
),
055602
(
2015
).
30.
G. L.
Jahns
,
M.
Soler
,
B. V.
Waddell
,
J. D.
Callen
, and
H. R.
Hicks
, “
Internal disruptions in tokamaks
,”
J. Comput. Phys.
18
(
5
),
609
628
(
1978
).
31.
P.
Francesco
, “
Viscous resistive magnetic reconnection
,”
Phys. Fluids
30
(
6
),
1734
1742
(
1987
).
32.
A. Y.
Aydemir
,
J. Y.
Kim
,
B. H.
Park
, and
J.
Seol
, “
On resistive magnetohydrodynamic studies of sawtooth oscillations in tokamaks
,”
Phys. Plasmas
22
(
3
),
032304
(
2015
).
33.
E. T.
Meier
,
V. S.
Lukin
, and
U.
Shumlak
, “
Spectral element spatial discretization error in solving highly anisotropic heat conduction equation
,”
Comput. Phys. Commun.
181
(
5
),
837
841
(
2010
).
You do not currently have access to this content.