In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with higher energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.

1.
G. A.
Mourou
,
T.
Tajima
, and
S. V.
Bulanov
, “
Optics in the relativistic regime
,”
Rev. Mod. Phys.
78
,
309
(
2006
).
2.
M.
Borghesi
,
D. H.
Campbell
,
A.
Schiavi
,
M. G.
Haines
,
O.
Willi
,
A. J.
MacKinnon
,
P.
Patel
,
L. A.
Gizzi
,
M.
Galimberti
,
R. J.
Clarke
,
F.
Pegoraro
,
H.
Ruhl
, and
S.
Bulanov
, “
Electric field detection in laser-plasma interaction experiments via the proton imaging technique
,”
Phys. Plasmas
9
,
2214
(
2002
).
3.
N.
Naumova
,
T.
Schlegel
,
V. T.
Tikhonchuk
,
C.
Labaune
,
I. V.
Sokolov
, and
G.
Mourou
, “
Hole boring in a DT pellet and fast-ion ignition with ultraintense laser pulses
,”
Phys. Rev. Lett.
102
,
025002
(
2009
).
4.
M.
Roth
,
T. E.
Cowan
,
M. H.
Key
,
S. P.
Hatchett
,
C.
Brown
,
W.
Fountain
,
J.
Johnson
,
D. M.
Pennington
,
R. A.
Snavely
,
S. C.
Wilks
,
K.
Yasuike
,
H.
Ruhl
,
F.
Pegoraro
,
S. V.
Bulanov
,
E. M.
Campbell
,
M. D.
Perry
, and
H.
Powell
, “
Fast Ignition by intense laser-accelerated proton beams
,”
Phys. Rev. Lett.
86
,
436
(
2001
).
5.
M.
Temporal
,
J. J.
Honrubia
, and
S.
Atzeni
, “
Numerical study of fast ignition of ablatively imploded deuterium ctritium fusion capsules by ultra-intense proton beams
,”
Phys. Plasmas
9
,
3098
(
2002
).
6.
S. V.
Bulanov
and
V. S.
Khoroshkov
, “
Feasibility of using laser ion accelerators in proton therapy
,”
Plasma Phys. Rep.
28
,
453
(
2002
).
7.
T.
Tajima
,
D.
Habs
, and
X. Q.
Yan
, “
Laser acceleration of ions for radiation therapy
,”
Rev. Accel. Sci. Technol.
02
,
201
(
2009
).
8.
T.
Esirkepov
,
M.
Borghesi
,
S. V.
Bulanov
,
G.
Mourou
, and
T.
Tajima
, “
Highly efficient relativistic-ion generation in the laser-piston regime
,”
Phys. Rev. Lett.
92
,
175003
(
2004
).
9.
A.
Macchi
,
F.
Cattani
,
T.
Liseykina
, and
F.
Cornolti
, “
Laser acceleration of ion bunches at the front surface of overdense plasmas
,”
Phys. Rev. Lett.
94
,
165003
(
2005
).
10.
X. Q.
Yan
,
C.
Lin
,
Z. M.
Sheng
,
Z. Y.
Guo
,
B. C.
Liu
,
Y. R.
Lu
,
J. X.
Fang
, and
J. E.
Chen
, “
Generating high-current monoenergetic proton beams by a circularlypolarized laser pulse in the phase-stable acceleration regime
,”
Phys. Rev. Lett.
100
,
135003
(
2008
).
11.
B.
Qiao
,
M.
Zepf
,
M.
Borghesi
, and
M.
Geissler
, “
Stable GeV ion-beam acceleration from thin foils by circularly polarized laser pulses
,”
Phys. Rev. Lett.
102
,
145002
(
2009
).
12.
M.
Chen
,
A.
Pukhov
,
T. P.
Yu
, and
Z. M.
Sheng
, “
Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse
,”
Phys. Rev. Lett.
103
,
024801
(
2009
).
13.
F.
Pegoraro
and
S. V.
Bulanov
, “
Photon bubbles and ion acceleration in a plasma dominated by the radiation pressure of an electromagnetic pulse
,”
Phys. Rev. Lett.
99
,
065002
(
2007
).
14.
O.
Klimo
,
J.
Psikal
,
J.
Limpouch
, and
V. T.
Tikhonchuk
, “
Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses
,”
Phys. Rev. Spec. Top.—Accel. Beams
11
,
031301
(
2008
).
15.
Z. M.
Zhang
,
X. T.
He
,
Z. M.
Sheng
, and
M. Y.
Yu
, “
High-density highly collimated monoenergetic GeV ions from interaction of ultraintense short laser pulse with foil in plasma
,”
Phys. Plasmas
17
,
043110
(
2010
).
16.
S. V.
Bulanov
,
E. Yu.
Echkina
,
T. Zh.
Esirkepov
,
I. N.
Inovenkov
,
M.
Kando
,
F.
Pegoraro
, and
G.
Korn
, “
Unlimited ion acceleration by radiation pressure
,”
Phys. Rev. Lett.
104
,
135003
(
2010
).
17.
M.
Chen
,
A.
Pukhov
,
Z. M.
Sheng
, and
X. Q.
Yan
, “
Laser mode effects on the ion acceleration during circularly polarized laser pulse interaction with foil targets
,”
Phys. Plasmas
15
,
113103
(
2008
).
18.
M. L.
Zhou
,
S.
Zhao
,
H. Y.
Wang
,
C.
Lin
,
H. Y.
Lu
,
Y. R.
Lu
,
T.
Tajima
,
X. T.
He
,
C. E.
Chen
,
Y. Q.
Gu
, and
X. Q.
Yan
, “
Instability-free ion acceleration by two laser pulses
,”
Eur. Phys. J. Spec. Top.
223
(
6
),
1031
1035
(
2014
).
19.
G.
Mourou
,
B.
Brocklesby
,
T.
Tajima
, and
J.
Limpert
, “
The future is fibre accelerators
,”
Nat. Photonics
7
,
258
(
2013
).
20.
M.
Chen
,
Z. M.
Sheng
,
J.
Zheng
,
Y. Y.
Ma
, and
J.
Zhang
, “
Development and application of multi-dimensional particle-in-cell codes for investigation of laser plasma interactions
,”
Chin. J. Comput. Phys.
25
(
1
),
50
(
2008
).
21.
T.
Esirkepov
,
M.
Yamagiwa
, and
T.
Tajima
, “
Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations
,”
Phys. Rev. Lett.
96
,
105001
(
2006
).
22.
E.
Ott
, “
Nonlinear evolution of the Rayleigh-Taylor instability of a thin layer
,”
Phys. Rev. Lett.
29
,
1429
(
1972
).
23.
H. J.
Kull
, “
Nonlinear free-surface Rayleigh-Taylor instability
,”
Phys. Rev. A
33
,
1957
(
1986
).
You do not currently have access to this content.