It is well known that two-dimensional macroscale shear flows are susceptible to instabilities leading to macroscale vortical structures. The linear and nonlinear fate of such a macroscale flow in a strongly coupled medium is a fundamental problem. A popular example of a strongly coupled medium is a dusty plasma, often modelled as a Yukawa liquid. Recently, laboratory experiments and molecular dynamics (MD) studies of shear flows in strongly coupled Yukawa liquids indicated the occurrence of strong molecular shear heating, which is found to reduce the coupling strength exponentially leading to the destruction of macroscale vorticity. To understand the vortex dynamics of strongly coupled molecular fluids undergoing macroscale shear flows and molecular shear heating, MD simulation has been performed, which allows the macroscopic vortex dynamics to evolve, while at the same time “removes” the microscopically generated heat without using the velocity degrees of freedom. We demonstrate that by using a configurational thermostat in a novel way, the microscale heat generated by shear flow can be thermostatted out efficiently without compromising the large scale vortex dynamics. In the present work, using MD simulations, a comparative study of shear flow evolution in Yukawa liquids in the presence and absence of molecular or microscopic heating is presented for a prototype shear flow, namely, Kolmogorov flow.

1.
N. N.
Rao
,
P. K.
Shukla
, and
M. Y.
Yu
,
Planet. Space Sci.
38
,
543
(
1990
).
2.
U.
de Angelis
, “
Dusty plasmas in fusion devices
,”
Phys. Plasmas
13
,
012514
(
2006
).
3.
H.
Thomas
,
G. E.
Morfill
,
V.
Demmel
,
J.
Goree
,
B.
Feuerbacher
, and
D.
Möhlmann
, “
Plasma crystal: Coulomb crystallization in a dusty plasma
,”
Phys. Rev. Lett.
73
,
652
(
1994
).
4.
J. H.
Chu
and
L. I.
Direct observation of coulomb crystals and liquids in strongly coupled rf dusty plasmas
,”
Phys. Rev. Lett.
72
,
4009
(
1994
).
5.
G. E.
Morfill
and
A. V.
Ivlev
, “
Complex plasmas: An interdisciplinary research field
,”
Rev. Mod. Phys.
81
,
1353
(
2009
).
6.
V. E.
Fortov
,
V. I.
Molotkov
,
A. P.
Nefedov
, and
O. F.
Petrov
, “
Liquid- and crystal-like structures in strongly coupled dusty plasmas
,”
Phys. Plasmas
6
,
1759
1768
(
1999
).
7.
V.
Nosenkol
and
J.
Goree
, “
Shear flows and shear viscosity in a two dimensional Yukawa system (dusty plasma)
,”
Phys. Rev. Lett.
93
,
155004
(
2004
).
8.
A.
Joy
and
A.
Sen
, “
Microscopic origin of shear relaxation in a model viscoelastic liquid
,”
Phys. Rev. Lett.
114
,
055002
(
2015
).
9.
H.
Ohta
and
S.
Hamaguchi
,
Phys. Rev. Lett.
84
,
6026
(
2000
).
10.
H.
Ohta
and
S.
Hamaguchi
,
Phys. Plasmas
13
,
4506
4514
(
2000
).
11.
A.
Joy
and
R.
Ganesh
, “
Kelvin Helmholtz instability in strongly coupled Yukawa liquids
,”
Phys. Rev. Lett.
104
,
215003
(
2010
).
12.
W.-T.
Juan
,
M.-H.
Chen
, and
L. I.
, “
Nonlinear transports and microvortex excitations in sheared quasi-two-dimensional dust coulomb liquids
,”
Phys. Rev. E
64
,
016402
(
2001
).
13.
Y.
Feng
,
J.
Goree
, and
B.
Liu
, “
Observation of temperature peaks due to strong viscous heating in a dusty plasma flow
,”
Phys. Rev. Lett.
109
,
185002
(
2012
).
14.
A.
Gupta
,
R.
Ganesh
, and
A.
Joy
, “
Kolmogorov flow in two dimensional strongly coupled yukawa liquid: A molecular dynamics study
,”
Phys. Plasmas
22
,
103706
(
2015
).
15.
A.
Joy
and
R.
Ganesh
, “
Coevolution of inverse cascade and nonlinear heat front in shear flows of strongly coupled yukawa liquids
,”
Phys. Plasmas
18
,
083704
(
2011
).
16.
L. D.
Meshalkin
and
Y. G.
Sinai
,
J. Appl. Math. Mech.
25
,
1700
(
1961
).
17.
A. M.
Obukhov
, “
Kolmogorov flow and laboratory simulation of it
,”
Russ. Math. Surv.
38
,
113
(
1983
).
18.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon
,
Oxford
,
1984
).
19.
D. H.
Kelley
and
N. T.
Ouellette
, “
Using particle tracking to measure flow instabilities in an undergraduate laboratory experiment
,”
Am. J. Phys.
79
,
267
(
2011
).
20.
I.
Bena
,
M. M.
Mansour
, and
F.
Baras
, “
Hydrodynamic fluctuations in the Kolmogorov flow: Linear regime
,”
Phys. Rev. E
59
,
5503
(
1999
).
21.
H. H.
Rugh
, “
Dynamical approach to temperature
,”
Phys. Rev. Lett.
78
,
772
774
(
1997
).
22.
B. D.
Butler
,
G.
Ayton
,
O. G.
Jepps
, and
D. J.
Evans
, “
Configurational temperature: Verification of Monte Carlo simulations
,”
J. Chem. Phys.
109
,
6519
6522
(
1998
).
23.
C.
Braga
and
K. P.
Travis
, “
A configurational temperature nose-hoover thermostat
,”
J. Chem. Phys.
123
,
134101
(
2005
).
24.
K. P.
Travis
and
C.
Braga
, “
Configurational temperature control for atomic and molecular systems
,”
J. Chem. Phys.
128
,
014111
(
2008
).
25.
J.
Delhommelle
and
D. J.
Evans
, “
Configurational temperature thermostat for fluids undergoing shear flow: application to liquid chlorine
,”
Mol. Phys.
99
,
1825
1829
(
2001
).
26.
J.
Delhommelle
and
D. J.
Evans
, “
Correspondence between configurational temperature and molecular kinetic temperature thermostats
,”
J. Chem. Phys.
117
,
6016
6021
(
2002
).
27.
P. K.
Patra
and
B.
Bhattacharya
, “
A deterministic thermostat for controlling temperature using all degrees of freedom
,”
J. Chem. Phys.
140
,
064106
(
2014
).
28.
Y.
Han
and
D. G.
Grier
, “
Configurational temperatures and interactions in charge-stabilized colloid
,”
J. Chem. Phys.
122
,
064907
(
2005
).
29.
A. C.
Brańka
and
S.
Pieprzyk
, “
Configurational temperature and Monte Carlo simulations
,”
Comput. Methods Sci. Technol.
16
,
119
125
(
2010
).
30.
A.
Joy
and
R.
Ganesh
, “
Effect of external drive on strongly coupled yukawa systems: A nonequilibrium molecular dynamics study
,”
Phys. Rev. E
80
,
056408
(
2009
).
31.
D. J.
Evans
and
O.
Morriss
, “
Non-Newtonian molecular dynamics
,”
Comput. Phys. Rep.
1
,
297
343
(
1984
).
32.
A.
Joy
and
R.
Ganesh
, “
Coherent vortices in strongly coupled liquids
,”
Phys. Rev. Lett.
106
,
135001
(
2011
).
33.
D. J.
Evans
and
B. L.
Holian
, “
The Nose-Hoover thermostat
,”
J. Chem. Phys.
83
,
4069
(
1985
).
34.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
, “
Nosé-Hoover chains: The canonical ensemble via continuous dynamics
,”
J. Chem. Phys.
97
,
2635
(
1992
).
35.
E.
Thomas
and
J.
Williams
, “
Experimental measurements of velocity dissipation and neutral-drag effects during the formation of a dusty plasma
,”
Phys. Rev. Lett.
95
,
055001
(
2005
).
36.
G.
Salin
and
J.-M.
Caillol
, “
Transport coefficients of the yukawa one-component plasma
,”
Phys. Rev. Lett.
88
,
065002
(
2002
).
37.
S. A.
Khrapak
and
H. M.
Thomas
, “
Fluid approach to evaluate sound velocity in yukawa systems and complex plasmas
,”
Phys. Rev. E
91
,
033110
(
2015
).
38.
J. P.
Hansen
and
I.
McDonald
,
Theory of Simple Liquids: With Applications to Soft Matter
, 4th ed. (
Academic
,
Oxford
,
2013
).
39.
P. G.
Drazin
,
Introduction to Hydrodynamic Stability
, Cambridge Text in Applied Mathematics (
University Press
,
Cambridge, England
,
2002
).
40.
P.
Hartmann
,
G. J.
Kalman
,
Z.
Donkó
, and
K.
Kutasi
, “
Equilibrium properties and phase diagram of two-dimensional yukawa systems
,”
Phys. Rev. E
72
,
026409
(
2005
).
You do not currently have access to this content.