The atmospheric pressure non-equilibrium plasma has shown a significant potential as a novel food decontamination technology. In this paper, we report a computational study of the intersection of negative streamer produced by air dielectric barrier discharge with bacteria biofilm on an apple surface. The structure, conductivities, and permittivities of bacteria biofilm have been considered in the Poisson's equations and transportation equations of charge and neutral species to realize self-consistent transportation of plasma between electrode and charging surfaces of apple. We find that the ionization near the biofilm facilitates the propagation of negative streamer when the streamer head is 1 mm from the biofilm. The structure of the biofilm results in the non-uniform distribution of ROS and RNS captured by flux and time fluence of these reactive species. The mean free path of charged species in μm scale permitted the plasma penetrate into the cavity of the biofilm, therefore, although the density of ROS and RNS decrease by 6–7 order of magnitude, the diffusion results in the uniform distribution of ROS and RNS inside the cavity during the pulse off period.

1.
M. K.
Boudam
,
M.
Moisan
,
B.
Saoudi
,
C.
Popovici
,
N.
Gherardi
, and
F.
Massines
,
J. Phys. Appl. Phys.
39
,
3494
(
2006
).
2.
G.
Fridman
,
M.
Peddinghaus
,
M.
Balasubramanian
,
H.
Ayan
,
A.
Fridman
,
A.
Gutsol
, and
A.
Brooks
,
Plasma Chem. Plasma Process.
26
,
425
(
2006
).
3.
M. G.
Kong
,
G.
Kroesen
,
G.
Morfill
,
T.
Nosenko
,
T.
Shimizu
,
J.
van Dijk
, and
J. L.
Zimmermann
,
New J. Phys.
11
,
115012
(
2009
).
4.
J. G.
Wang
,
X. Y.
Liu
,
D. W.
Liu
,
X. P.
Lu
, and
Y. T.
Zhang
,
Phys. Plasmas
20
,
113507
(
2013
).
5.
G.
Fridman
,
A.
Shereshevsky
,
M. M.
Jost
,
A. D.
Brooks
,
A.
Fridman
,
A.
Gutsol
,
V.
Vasilets
, and
G.
Friedman
,
Plasma Chem. Plasma Process.
27
,
163
(
2007
).
6.
X. T.
Deng
,
J. J.
Shi
, and
M. G.
Kong
,
J. Appl. Phys.
101
,
74701
(
2007
).
7.
B. A.
Niemira
and
J.
Sites
,
J. Food Prot.
71
,
1357
(
2008
), available at http://www.ncbi.nlm.nih.gov/pubmed/18680933.
8.
S.
Perni
,
D. W.
Liu
,
G.
Shama
, and
M. G.
Kong
,
J. Food Prot.
71
,
302
(
2008
), available at http://www.ncbi.nlm.nih.gov/pubmed/18326179.
9.
S. K.
Rod
,
F.
Hansen
,
F.
Leipold
, and
S.
Knochel
,
Food Microbiol.
30
,
233
(
2012
).
10.
J. L.
Walsh
and
M. G.
Kong
,
Appl. Phys. Lett.
93
,
111501
(
2008
).
11.
F.
Iza
,
J. L.
Walsh
, and
M. G.
Kong
,
IEEE Trans. Plasma Sci.
37
,
1289
(
2009
).
12.
J.
Little
,
K.
Takashima
,
M.
Nishihara
,
I.
Adamovich
, and
M.
Samimy
,
AIAA J.
50
,
350
(
2012
).
13.
N. Y.
Babaeva
and
M. J.
Kushner
,
J. Phys. D: Appl. Phys.
46
,
25401
(
2013
).
14.
M.
Vleugels
,
G.
Shama
,
X. T.
Deng
,
E.
Greenacre
,
T.
Brocklehurst
, and
M. G.
Kong
,
IEEE Trans. Plasma Sci.
33
,
824
(
2005
).
15.
I.
Carmichael
,
I. S.
Harper
,
M. J.
Coventry
,
P. W. J.
Taylor
,
J.
Wan
, and
M. W.
Hickey
,
J. Appl. Microbiol.
85
,
45S
(
1998
).
16.
G. V.
Naidis
,
J. Phys. D: Appl. Phys.
43
,
402001
(
2010
).
17.
J.-P.
Boeuf
,
L. L.
Yang
, and
L. C.
Pitchford
,
J. Phys. D: Appl. Phys.
46
,
15201
(
2013
).
18.
D.
Breden
,
K.
Miki
, and
L. L.
Raja
,
Plasma Sources Sci. Technol.
21
,
34011
(
2012
).
19.
X. Y.
Liu
,
X. K.
Pei
,
X. P.
Lu
, and
D. W.
Liu
,
Plasma Sources Sci. Technol.
23
,
35007
(
2014
).
20.
H.
Cheng
,
X.
Lu
, and
D.
Liu
,
Plasma Processes Polym.
12
,
1343
(
2015
).
21.
G.
Park
,
H.
Lee
,
G.
Kim
, and
J. K.
Lee
,
Plasma Processes Polym.
5
,
569
(
2008
).
22.
D.-X.
Liu
,
M.-Z.
Rong
,
X.-H.
Wang
,
F.
Iza
,
M. G.
Kong
, and
P.
Bruggeman
,
Plasma Processes Polym.
7
,
846
(
2010
).
23.
D. X.
Liu
,
P.
Bruggeman
,
F.
Iza
,
M. Z.
Rong
, and
M. G.
Kong
,
Plasma Sources Sci. Technol.
19
,
25018
(
2010
).
24.
T.
Shimizu
,
Y.
Sakiyama
,
D. B.
Graves
,
J. L.
Zimmermann
, and
G. E.
Morfill
,
New J. Phys.
14
,
103028
(
2012
).
25.
Y.
Sakiyama
,
D. B.
Graves
,
H.-W.
Chang
,
T.
Shimizu
, and
G. E.
Morfill
,
J. Phys. D: Appl. Phys.
45
,
425201
(
2012
).
26.
X. Y.
Liu
,
M. B.
He
, and
D. W.
Liu
,
Phys. Plasmas
22
,
43513
(
2015
).
27.
T.
Murakami
,
K.
Niemi
,
T.
Gans
,
D.
O'Connell
, and
W. G.
Graham
,
Plasma Sources Sci. Technol.
22
,
15003
(
2013
).
28.
A.
Almatroudi
,
H.
Hu
,
A.
Deva
,
I. B.
Gosbell
,
A.
Jacombs
,
S. O.
Jensen
,
G.
Whiteley
,
T.
Glasbey
, and
K.
Vickery
,
J. Microbiol. Methods
117
,
171
(
2015
).
29.
G. H.
Markx
,
Y.
Huang
,
X.-F.
Zhou
, and
R.
Pethig
,
Microbiol. Read.
140
,
585
(
1994
).
30.
R.
Maurício
,
C. J.
Dias
, and
F.
Santana
,
Environ. Monit. Assess.
119
,
599
(
2006
).
31.
M.
Simek
,
J. Phys. D: Appl. Phys.
47
,
463001
(
2014
).
32.
Y. P.
Raizer
,
Gas Discharge Physics
(
Springer
,
1991
), Corrected.
33.
S. J.
Beebe
,
P. M.
Fox
,
L. J.
Rec
,
K.
Somers
,
R. H.
Stark
, and
K. H.
Schoenbach
, in
Pulsed Power Plasma Science 2001 PPPS-2001. Digest of Technical Paper
(
2001
), pp.
211
215
, vol.
1
.
34.
D. W.
Liu
,
F.
Iza
, and
M. G.
Kong
,
Appl. Phys. Lett.
93
,
261503
(
2008
).
35.
X.
Yan
,
Z.
Xiong
,
F.
Zou
,
S.
Zhao
,
X.
Lu
,
G.
Yang
,
G.
He
, and
K.
(Ken) Ostrikov
,
Plasma Processes. Polym.
9
,
59
(
2012
).
36.
X.
Pei
,
X.
Lu
,
J.
Liu
,
D.
Liu
,
Y.
Yang
,
K.
Ostrikov
,
P. K.
Chu
, and
Y.
Pan
,
J. Phys. D: Appl. Phys.
45
,
165205
(
2012
).
37.
X. Y.
Liu
,
J. T.
Hu
,
J. H.
Liu
,
Z. L.
Xiong
,
D. W.
Liu
,
X. P.
Lu
, and
J. J.
Shi
,
Appl. Phys. Lett.
101
,
43705
(
2012
).
38.
X.
Lu
,
G. V.
Naidis
,
M.
Laroussi
, and
K.
Ostrikov
,
Phys. Rep.
540
,
123
(
2014
).
39.
X.
Deng
,
J.
Shi
, and
M. G.
Kong
,
IEEE Trans. Plasma Sci.
34
,
1310
(
2006
).
You do not currently have access to this content.