The two-stream instability is probably the most important elementary example of collective instabilities in plasma physics and beam-plasma systems. For a warm plasma with two charged particle species, the instability diagram of the two-stream instability based on a 1D warm-fluid model exhibits an interesting band structure that has not been explained. We show that the band structure for this instability is the consequence of the Hamiltonian nature of the warm two-fluid system. Interestingly, the Hamiltonian nature manifests as a complex G-Hamiltonian structure in wave-number space, which directly determines the instability diagram. Specifically, it is shown that the boundaries between the stable and unstable regions are locations for Krein collisions between eigenmodes with different Krein signatures. In terms of physics, this rigorously implies that the system is destabilized when a positive-action mode resonates with a negative-action mode, and that this is the only mechanism by which the system can be destabilized. It is anticipated that this physical mechanism of destabilization is valid for other collective instabilities in conservative systems in plasma physics, accelerator physics, and fluid dynamics systems, which admit infinite-dimensional Hamiltonian structures.

1.
R. C.
Davidson
,
H.
Qin
,
P. H.
Stoltz
, and
T. S.
Wang
,
Phys. Rev. Spec. Top. - Accel. Beams
2
,
054401
(
1999
).
2.
R. C.
Davidson
and
H.
Qin
,
Physics of Intense Charged Particle Beams in High Energy Accelerators
(
World Scientific
,
2001
).
3.
H.
Qin
,
R. C.
Davidson
, and
W. W.
Lee
,
Phys. Rev. Spec. Top. - Accel. Beams
3
,
084401
(
2000
).
4.
F.
Zimmermann
,
Phys. Rev. Spec. Top. - Accel. Beams
7
,
124801
(
2004
).
5.
H.
Qin
and
R. C.
Davidson
,
Phys. Plasmas
21
,
064505
(
2014
).
6.
C. S.
Kueny
and
P. J.
Morrison
,
Phys. Plasmas
2
,
1926
(
1995
).
7.
P. J.
Morrison
and
G. I.
Hagstrom
, in
Nonlinear Physical Systems
, edited by
O.
Kriillov
and
D.
Pelinovsky
(
Wiley
,
2014
).
8.
C. N.
Lashmore-Davies
,
Phys. Plasmas
14
,
092101
(
2007
).
9.
M.
Krein
,
Dokl. Akad. Nauk. SSSR N. S.
73
,
445
(
1950
).
10.
I. M.
Gel'fand
and
V. B.
Lidskii
,
Usp. Mat. Nauk
10
,
3
(
1955
).
11.
V.
Yakubovich
and
V.
Starzhinskii
,
Linear Differential Equations with Periodic Coefficients
(
Krieger
,
1958
), Vol.
I
.
12.
P.
Sturrock
,
Ann. Phys.
4
,
306
(
1958
).
13.
H.
Qin
and
R. C.
Davidson
,
Phys. Rev. ST Accel. Beams
12
,
064001
(
2009
).
14.
H.
Qin
,
R. C.
Davidson
,
M.
Chung
, and
J. W.
Burby
,
Phys. Rev. Lett.
111
,
104801
(
2013
).
15.
M.
Chung
,
H.
Qin
,
E. P.
Gilson
, and
R. C.
Davidson
,
Phys. Plasmas
20
,
083121
(
2013
).
16.
H.
Qin
,
R. C.
Davidson
,
J. W.
Burby
, and
M.
Chung
,
Phys. Rev. ST Accel. Beams
17
,
044001
(
2014
).
17.
H.
Qin
,
M.
Chung
,
R. C.
Davidson
, and
J. W.
Burby
,
Phys. Plasmas
22
,
056702
(
2015
).
18.
L.
Groening
,
M.
Maier
,
C.
Xiao
,
L.
Dahl
,
P.
Gerhard
,
O. K.
Kester
,
S.
Mickat
,
H.
Vormann
,
M.
Vossberg
, and
M.
Chung
,
Phys. Rev. Lett.
113
,
264802
(
2014
).
19.
M.
Tekkoyun
and
G.
Cabar
,
Rend. Istit. Mat. Univ. Triest
XXXVIII
,
53
(
2006
).
20.
F.
Strocchi
,
Rev. Mod. Phys.
38
,
36
(
1966
).
21.
P. J.
Morrison
,
Phys. Lett. A
80
,
383
(
1980
).
22.
A.
Weinstein
and
P. J.
Morrison
,
Phys. Lett.
86
,
235
(
1981
).
23.
J. E.
Marsden
and
A.
Weinstein
,
Physica
4D
,
394
(
1982
).
24.
P. J.
Morrison
,
AIP Conf. Proc.
88
,
13
46
(
1982
).
25.
J.
Burby
,
A.
Brizard
,
P.
Morrison
, and
H.
Qin
,
Phys. Lett. A
379
,
2073
(
2015
).
26.
P. J.
Morrison
,
Rev. Mod. Phys.
70
,
467
(
1998
).
You do not currently have access to this content.