Low pressure capacitive radio frequency (RF) plasmas are often described by equivalent circuit models based on fluid approaches that predict the self-excitation of resonances, e.g., high frequency oscillations of the total current in asymmetric discharges, but do not provide a kinetic interpretation of these effects. In fact, they leave important questions open: How is current continuity ensured in the presence of energetic electron beams generated by the expanding sheaths that lead to a local enhancement of the conduction current propagating through the bulk? How do the beam electrons interact with cold bulk electrons? What is the kinetic origin of resonance phenomena? Based on kinetic simulations, we find that the energetic beam electrons interact with cold bulk electrons (modulated on a timescale of the inverse local electron plasma frequency) via a time dependent electric field outside the sheaths. This electric field is caused by the electron beam itself, which leaves behind a positive space charge, that attracts cold bulk electrons towards the expanding sheath. The resulting displacement current ensures current continuity by locally compensating the enhancement of the conduction current. The backflow of cold electrons and their interaction with the nonlinear plasma sheath cause the generation of multiple electron beams during one phase of sheath expansion and contribute to a strongly non-sinusoidal RF current. These kinetic mechanisms are the basis for a fundamental understanding of the electron power absorption dynamics and resonance phenomena in such plasmas, which are found to occur in discharges of different symmetries including perfectly symmetric plasmas.

1.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
, 2nd ed. (
Wiley
,
New York
,
2005
).
2.
P.
Chabert
and
N.
Braithwaite
,
Physics of Radio-Frequency Plasmas
(
Cambridge University Press
,
2011
).
3.
S.
Bienholz
,
N.
Bibinov
, and
P.
Awakowicz
,
J. Phys. D: Appl. Phys.
46
,
084010
(
2013
).
4.
S.
Samukawa
,
M.
Hori
,
S.
Rauf
,
K.
Tachibana
,
P.
Bruggeman
,
G.
Kroesen
,
J.
Whitehead
,
A.
Murphy
,
A.
Gutsol
,
S.
Starikovskaia
,
U.
Kortshagen
,
J. P.
Boeuf
,
T.
Sommerer
,
M.
Kushner
,
U.
Czarnetzki
, and
N.
Mason
,
J. Phys. D: Appl. Phys.
45
,
253001
(
2012
).
5.
P.
Belenguer
and
J. P.
Boeuf
,
Phys. Rev. A
41
,
4447
(
1990
).
6.
D.
Vender
and
R. W.
Boswell
,
J. Vac. Sci. Technol., A
10
(
4
),
1331
(
1992
).
7.
M. M.
Turner
and
M. B.
Hopkins
,
Phys. Rev. Lett.
69
(
24
),
3511
(
1992
).
8.
J.
Schulze
,
Z.
Donkó
,
B. G.
Heil
,
D.
Luggenhölscher
,
T.
Mussenbrock
,
R. P.
Brinkmann
, and
U.
Czarnetzki
,
J. Phys. D: Appl. Phys.
41
,
105214
(
2008
).
9.
U.
Czarnetzki
,
D.
Luggenhölscher
, and
H. F.
Dobele
,
Plasma Sources Sci. Technol.
8
,
230
(
1999
).
10.
M. A.
Lieberman
and
V. A.
Godyak
,
IEEE Trans. Plasma Sci.
26
(
3
),
955
(
1998
).
11.
M. A.
Lieberman
,
IEEE Trans. Plasma Sci.
16
(
6
),
638
(
1988
).
12.
M.
Surendra
and
D. B.
Graves
,
Phys. Rev. Lett.
66
,
1469
(
1991
).
13.
14.
G.
Gozadinos
,
M. M.
Turner
, and
D.
Vender
,
Phys. Rev. Lett.
87
,
135004
(
2001
).
15.
M. M.
Turner
,
J. Phys. D: Appl. Phys.
42
,
194008
(
2008
).
16.
I. D.
Kaganovich
,
Phys. Rev. Lett.
89
,
265006
(
2002
).
17.
I. D.
Kaganovich
,
O. V.
Polomarov
, and
C. E.
Theodosioue
,
IEEE Trans. Plasma Sci.
34
(
3
),
696
(
2006
).
18.
T.
Lafleur
,
P.
Chabert
, and
J. P.
Booth
,
Plasma Sources Sci. Technol.
23
,
035010
(
2014
).
19.
T.
Lafleur
,
P.
Chabert
,
M. M.
Turner
, and
J. P.
Booth
,
Plasma Sources Sci. Technol.
23
,
015016
(
2014
).
20.
S.
Sharma
and
M. M.
Turner
,
Phys. Plasmas
20
,
073507
(
2013
).
21.
B. P.
Wood
, Ph.D. thesis,
University of Berkeley
,
California
,
1991
.
22.
J.
Schulze
,
B. G.
Heil
,
D.
Luggenhölscher
,
U.
Czarnetzki
, and
R. P.
Brinkmann
,
J. Phys. D: Appl. Phys.
41
,
042003
(
2008
).
23.
J.
Schulze
,
B. G.
Heil
,
D.
Luggenhölscher
,
R. P.
Brinkmann
, and
U.
Czarnetzki
,
J. Phys. D: Appl. Phys.
41
,
195212
(
2008
).
24.
J.
Schulze
,
T.
Kampschulte
,
D.
Luggenhölscher
, and
U.
Czarnetzki
,
J. Phys.: Conf. Ser.
86
,
012010
(
2007
).
25.
J.
Schulze
,
Z.
Donkó
,
A.
Derzsi
,
I.
Korolov
, and
E.
Schuengel
,
Plasma Sources Sci. Technol.
24
,
015019
(
2014
).
26.
Y. X.
Liu
,
Q. Z.
Zhang
,
W.
Jiang
,
L. J.
Hou
,
X. Z.
Jiang
,
W. Q.
Lu
, and
Y. N.
Wang
,
Phys. Rev. Lett.
107
,
055002
(
2011
).
27.
Y. X.
Liu
,
Q. Z.
Zhang
,
W.
Jiang
,
W. Q.
Lu
, and
Y. N.
Wang
,
Plasma Sources Sci. Technol.
21
,
035010
(
2012
).
28.
T.
Mussenbrock
and
R. B.
Brinkmann
,
Appl. Phys. Lett.
88
,
151503
(
2006
).
29.
T.
Mussenbrock
,
R. B.
Brinkmann
,
M. A.
Lieberman
,
A. J.
Lichtenberg
, and
E.
Kawamura
,
Phys. Rev. Lett.
101
,
085004
(
2008
).
30.
U.
Czarnetzki
,
T.
Mussenbrock
, and
R. P.
Brinkmann
,
Phys. Plasmas
13
,
123503
(
2006
).
31.
T.
Mussenbrock
and
R. B.
Brinkmann
,
Plasma Sources Sci. Technol.
16
,
377
385
(
2007
).
32.
B. M.
Annaratone
,
V. K. T.
Ku
, and
J. E.
Allen
,
J. Appl. Phys.
77
,
5455
(
1995
).
33.
V. K. T.
Ku
,
B. M.
Annaratone
, and
J. E.
Allen
,
J. Appl. Phys.
84
,
6536
(
1998
).
34.
V. K. T.
Ku
,
B. M.
Annaratone
, and
J. E.
Allen
,
J. Appl. Phys.
84
,
6546
(
1998
).
35.
M. A.
Lieberman
,
A. J.
Lichtenberg
,
E.
Kawamura
,
T.
Mussenbrock
, and
R. B.
Brinkmann
,
Phys. Plasmas
15
,
063505
(
2008
).
36.
Z.
Donkó
,
J.
Schulze
,
U.
Czarnetzki
, and
D.
Luggenhölscher
,
Appl. Phys. Lett.
94
,
131501
(
2009
).
37.
E.
Schungel
,
S.
Brandt
,
Z.
Donkó
,
I.
Korolov
,
A.
Derzsi
, and
J.
Schulze
,
Plasma Sources Sci. Technol.
24
,
044009
(
2015
).
38.
E.
Schuengel
,
S.
Brandt
,
I.
Korolov
,
A.
Derzsi
,
Z.
Donkó
, and
J.
Schulze
,
Phys. Plasmas
22
,
043512
(
2015
).
39.
B.
Bora
,
H.
Bhuyan
,
M.
Favre
,
E.
Wyndham
, and
H.
Chuaqui
,
Appl. Phys. Lett.
100
,
094103
(
2012
).
40.
B.
Bora
,
Plasma Sources Sci. Technol.
24
,
054002
(
2015
).
41.
M.
Klick
,
W.
Rehak
, and
M.
Kammeyer
,
Jpn. J. App. Phys., Part 1
36
,
4625
(
1997
).
42.
E.
Semmler
,
P.
Awakowicz
, and
A.
von Keudell
,
Plasma Sources Sci. Technol.
16
,
839
(
2007
).
43.
B.
Bora
,
H.
Bhuyan
,
M.
Favre
,
E.
Wyndham
,
H.
Chuaqui
, and
M.
Kakati
,
Phys. Plasmas
18
,
103509
(
2011
).
44.
D.
O'Connell
,
T.
Gans
,
D.
Vender
,
U.
Czarnetzki
, and
R.
Boswell
,
Phys. Plasmas
14
,
034505
(
2007
).
45.
D.
O'Connell
,
T.
Gans
,
A.
Meige
,
P.
Awakowicz
, and
R.
Boswell
,
IEEE Trans. Plasma Sci.
36
(
4
),
1382
1383
(
2008
).
46.
C. K.
Birdsall
,
IEEE Trans. Plasma Sci.
19
,
65
(
1991
).
47.
Z.
Donko
,
Plasma Sources Sci. Technol.
20
,
024001
(
2011
).
48.
M. M.
Turner
,
A.
Derzsi
,
Z.
Donkó
,
D.
Eremin
,
S. J.
Kelly
,
T.
Lafleur
, and
T.
Mussenbrock
,
Phys. Plasmas
20
,
013507
(
2013
).
49.
A. V.
Phelps
,
J. Appl. Phys.
76
,
747
(
1994
).
50.
A. V.
Phelps
, see http://jilawww.colorado.edu/∼avp/collision_data/ for cross sections for the simulation.
51.
S.
Wilczek
,
J.
Trieschmann
,
J.
Schulze
,
E.
Schuengel
,
R. P.
Brinkmann
,
A.
Derzsi
,
I.
Korolov
,
Z.
Donkó
, and
T.
Mussenbrock
,
Plasma Sources Sci. Technol.
24
,
024002
(
2015
).
52.
M.
Klick
,
J. Appl. Phys.
79
,
3445
(
1996
).
You do not currently have access to this content.