The study of high intensity ion beams driven by high power pulsed lasers is an active field of research. Of particular interest is the radiation pressure acceleration, for which simulations predict narrow band ion energies up to GeV. We derive a laser-piston model by applying techniques for non-relativistic gas-dynamics. The model reveals a laser intensity limit, below which sufficient laser-piston acceleration is impossible. The relation between target thickness and piston velocity as a function of the laser pulse length yields an approximation for the permissible target thickness. We performed one-dimensional Particle-In-Cell simulations to confirm the predictions of the analytical model. These simulations also reveal the importance of electromagnetic energy transport. We find that this energy transport limits the achievable compression and rarefies the plasma.

1.
B.
Aurand
,
S.
Kuschel
,
O.
Jäckel
,
C.
Rödel
,
H. Y.
Zhao
,
S.
Herzer
,
A. E.
Paz
,
J.
Bierbach
,
J.
Polz
,
B.
Elkin
,
A.
Karmakar
,
P.
Gibbon
,
M. C.
Kaluza
, and
T.
Kuehl
,
Nucl. Instrum. Methods Phys. Res., Sect. A
740
,
83
86
(
2014
).
2.
B.
Aurand
,
S.
Kuschel
,
O.
Jäckel
,
C.
Rödel
,
H. Y.
Zhao
,
S.
Herzer
,
A. E.
Paz
,
J.
Bierbach
,
J.
Polz
,
B.
Elkin
,
G. G.
Paulus
,
A.
Karmakar
,
P.
Gibbon
,
T.
Kuehl
, and
M. C.
Kaluza
, “
Radiation pressure-assisted acceleration of ions using multi-component foils in high-intensity laser-matter interactions
,”
New J. Phys.
15
,
033031
(
2013
).
3.
T.
Ceccotti
,
A.
Lévy
,
F.
Réau
,
H.
Popescu
,
P.
Monot
,
E.
Lefebvre
, and
P.
Martin
, “
TNSA in the ultra-high contrast regime
,”
Plasma Phys. Controlled Fusion
50
,
124006
(
2008
).
4.
R.
Courant
and
K.
Friedrichs
,
Supersonic Flow and Shock Waves
(
Springer-Verlag
,
Berlin, Heidelberg, New York
,
1999
), Vol. 5.
5.
L.
Debnath
,
Nonlinear Partial Differential Equations
(
Birkhäuser
,
2012
), Vol. 3.
6.
T.
Esirkepov
,
M.
Borghesi
,
S. V.
Bulanov
,
G.
Mourou
, and
T.
Tajima
, “
Highly efficient relativistic-ion generation in the laser-piston regime
,”
Phys. Rev. Lett.
92
(
17
),
175003
(
2004
).
7.
J.
Fuchs
,
P.
Antici
,
E.
D'Humières
,
E.
Lefebvre
,
M.
Borghesi
,
E.
Brambrink
,
C. A.
Cecchetti
,
M.
Kaluza
,
V.
Malka
,
M.
Manclossi
,
S.
Meyroneinc
,
P.
Mora
,
J.
Schreiber
,
T.
Toncian
,
H.
Pépin
, and
P.
Audebert
, “
Laser-driven proton scaling laws and new paths towards energy increase
,”
Nat. Phys.
2
,
48
54
(
2006
).
8.
S.
Kar
,
K. F.
Kakolee
,
B.
Qiao
,
A.
Macchi
,
M.
Cerchez
,
D.
Doria
,
M.
Geissler
,
P.
McKenna
,
D.
Neely
,
J.
Osterholz
,
R.
Prasad
,
K.
Quinn
,
B.
Ramakrishna
,
G.
Sarri
,
O.
Willi
,
X. Y.
Yuan
,
M.
Zepf
, and
M.
Borghesi
, “
Ion acceleration in multispecies targets driven by intense laser radiation pressure
,”
Phys. Rev. Lett.
109
,
185006
(
2012
).
9.
Z.
Lécz
,
O.
Boine-Frankenheim
, and
V.
Kornilov
, “
Target normal sheath acceleration for arbitrary proton layer thickness
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
727
,
51
58
(
2013
).
10.
M. C.
Levy
,
S. C.
Wilks
,
M.
Tabak
,
S. B.
Libby
, and
M. G.
Baring
, “
Petawatt laser absorption bounded
,”
Nat. Commun.
5
,
4149
(
2014
).
11.
A.
Macchi
,
S.
Veghini
,
T. V.
Liseykina
, and
F.
Pegoraro
, “
Radiation pressure acceleration of ultrathin foils
,”
New J. Phys.
12
,
045013
(
2010
).
12.
P.
Mulser
and
D.
Bauer
,
High Power Laser-Matter Interaction
(
Springer-Verlag
,
Berlin, Heidelberg
,
2010
), Vol. 238.
13.
M.
Passoni
,
L.
Bertagna
, and
A.
Zani
, “
Target normal sheath acceleration: Theory, comparison with experiments and future perspectives
,”
New J. Phys.
12
,
045012
(
2010
).
14.
A. P. L.
Robinson
,
M.
Zepf
,
S.
Kar
,
R. G.
Evans
, and
C.
Bellei
, “
Radiation pressure acceleration of thin foils with circularly polarized laser pulses
,”
New J. Phys.
10
,
013021
(
2008
).
15.
S. G.
Rykovanov
,
J.
Schreiber
,
J.
Meyer-ter Vehn
,
C.
Bellei
,
A.
Henig
,
H. C.
Wu
, and
M.
Geissler
, “
Ion acceleration with ultra-thin foils using elliptically polarized laser pulses
,”
New J. Phys.
10
,
113005
(
2008
).
16.
T.
Schlegel
,
N.
Naumova
,
V. T.
Tikhonchuk
,
C.
Labaune
,
I. V.
Sokolov
, and
G.
Mourou
, “
Relativistic laser piston model: Ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses
,”
Phys. Plasmas
16
,
083103
(
2009
).
17.
P.
Schmidt
,
O.
Boine-Frankenheim
, and
P.
Mulser
, “
Optimum laser parameters for 1D radiation pressure acceleration
,”
Laser Part. Beams
33
,
387
396
(
2015
).
18.
See https://www.txcorp.com/vsim for Tech-X, Vsim Website,
2015
.
19.
G. B.
Whitham
,
Linear and Nonlinear Waves
(
John Wiley & Sons
,
1974
).
20.
S. C.
Wilks
,
A. B.
Langdon
,
T. E.
Cowan
,
M.
Roth
,
M.
Singh
,
S.
Hatchett
,
M. H.
Key
,
D.
Pennington
,
A.
MacKinnon
, and
R. A.
Snavely
, “
Energetic proton generation in ultra-intense laser-solid interactions
,”
Phys. Plasmas
8
,
542
549
(
2001
).
21.
Y. B.
Zel'dovich
and
Y. P.
Raizer
,
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
(
Dover Publishing Inc.
,
2002
).
You do not currently have access to this content.