More than fifty years ago, the Korteweg-de Vries equation was shown to describe not only solitary surface waves on shallow water, but also nonlinear ion-acoustic waves. Because of the algorithmic ease of using reductive perturbation theory, intensive research followed on a wide range of wave types. Soon, the formalism was extended to nonplanar modes by introducing a stretching designed to accommodate spherically and cylindrically symmetric ion-acoustic waves. Over the last two decades many authors followed this approach, but almost all have ignored the severe restrictions in parameter space imposed by the Ansatz. In addition, for other steps in the formalism, the justification is often not spelled out, leading to effects that are physically undesirable or ambiguous. Hence, there is a need to critically assess this approach to nonplanar modes and to use it with the utmost care, respecting the restrictions on its validity. Only inward propagation may be meaningfully studied and respect for weak nonlinearities of at most 1/10 implies that one cannot get closer to the axis or centre of symmetry than about 30 Debye lengths. Thus, one is in a regime where the modes are quasi-planar and not particularly interesting. Most papers disregard these constraints and hence reach questionable conclusions.

1.
D. J.
Korteweg
and
G.
de Vries
,
Philos. Mag.
39
,
422
(
1895
).
2.
H.
Washimi
and
T.
Taniuti
,
Phys. Rev. Lett.
17
,
996
(
1966
).
3.
P. G.
Drazin
and
R. S.
Johnson
,
Solitons: An Introduction
(
Cambridge University Press
,
Cambridge, UK
,
1989
).
4.
R. C.
Davidson
,
Methods in Nonlinear Plasma Theory
(
Academic Press
,
New York
,
1972
).
5.
S.
Maxon
and
J.
Viecelli
,
Phys. Rev. Lett.
32
,
4
(
1974
).
6.
S.
Maxon
and
J.
Viecelli
,
Phys. Fluids
17
,
1614
(
1974
).
7.
N.
Hershkowitz
and
T.
Romesser
,
Phys. Rev. Lett.
32
,
581
(
1974
).
8.
Y.
Nakamura
,
M.
Ooyama
, and
T.
Ogino
,
Phys. Rev. Lett.
45
,
1565
(
1980
).
9.
I.
Tsukabayashi
,
Y.
Nakamura
, and
T.
Ogino
,
Phys. Lett. A
81
,
507
(
1981
).
10.
Y.
Nakamura
and
T.
Ogino
,
Plasma Phys.
24
,
1295
(
1982
).
11.
Y.
Nakamura
,
IEEE Trans. Plasma Sci.
10
,
180
(
1982
).
12.
F.
Verheest
and
M. A.
Hellberg
,
Phys. Plasmas
21
,
022307
(
2014
).
13.
14.
15.
F. F.
Chen
,
Introduction to Plasma Physics and Controlled Fusion, Vol. 1: Plasma Physics
, 2nd ed. (
Plenum Press
,
New York
,
1984
).
17.
W. R.
Lepage
,
Complex Variables and the Laplace Transform for Engineers
(
McGraw-Hill
,
New York
,
1961
), pp.
336
338
.
18.
S. A.
Shan
and
A.
Rehman
,
Astrophys. Space Sci.
352
,
593
(
2014
).
19.
S. A.
Shan
and
A.
Rehman
,
Astrophys. Space Sci.
360
,
70
(
2015
).
20.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley
,
New York
,
1998
), pp.
425
429
.
21.
R.
Courant
, in
Modern Mathematics for the Engineer
, edited by
E. F.
Beckenbach
(
McGraw-Hill
,
New York
,
1956
), p.
92
.
22.
A.
Sommerfeld
,
Optics
(
Academic Press
,
New York
,
1964
).
23.
P. M.
Morse
and
H.
Feshbach
,
Methods of Theoretical Physics
(
McGraw Hill
,
New York
,
1953
).
24.
E.
Infeld
and
G.
Rowlands
,
Nonlinear Waves, Solitons and Chaos
(
Cambridge University Press
,
Cambridge, UK
,
2000
).
25.
We thank an anonymous referee for drawing this argument to our attention.
26.
S. K.
Ghosh
,
S. K.
Gupta
, and
P.
Chatterjee
,
Phys. Scr.
90
,
125601
(
2015
).
27.
J.-N.
Han
,
J.-H.
Luo
, and
J.-X.
Li
,
Astrophys. Space Sci.
349
,
305
(
2014
).
28.
J.-N.
Han
,
W.-S.
Duan
,
J.-X.
Li
,
Y.-L.
He
,
J.-H.
Luo
,
Y.-G.
Nan
,
Z.-H.
Han
, and
G.-X.
Dong
,
Phys. Plasmas
21
,
012102
(
2014
).
29.
J.-N.
Han
,
J.-X.
Li
,
J.-H.
Luo
,
G.-H.
Sun
,
Z.-L.
Liu
,
S.-H.
Ge
, and
X.-X.
Wang
,
Phys. Scr.
89
,
025603
(
2014
).
30.
I.
Tasnim
,
M. M.
Masud
, and
A. A.
Mamun
,
J. Korean Phys. Soc.
64
,
987
(
2014
).
31.
H. R.
Pakzad
,
K.
Javidan
, and
M.
Tribeche
,
Astrophys. Space Sci.
352
,
185
(
2014
).
32.
M. M.
Rahman
,
M. S.
Alam
, and
A. A.
Mamun
,
Astrophys. Space Sci.
352
,
193
(
2014
).
33.
M. R.
Hossen
,
L.
Nahar
,
S.
Sultana
, and
A. A.
Mamun
,
Astrophys. Space Sci.
353
,
123
(
2014
).
34.
S. A.
Shan
,
S.
Ali
, and
Aman-ur-Rehman
,
Astrophys. Space Sci.
353
,
151
(
2014
).
35.
M. R.
Hossen
and
A. A.
Mamun
,
Braz. J. Phys.
44
,
673
(
2014
).
36.
M. R.
Hossen
,
L.
Nahar
, and
A. A.
Mamun
,
J. Korean Phys. Soc.
65
,
1863
(
2014
).
37.
M. R.
Hossen
and
A. A.
Mamun
,
J. Korean Phys. Soc.
65
,
2045
(
2014
).
38.
P. K.
Mandal
,
M. K.
Ghorui
,
A.
Saha
, and
P.
Chatterjee
,
Astrophys. Space Sci.
355
,
89
(
2015
).
39.
M. J.
Uddin
,
M. S.
Alam
, and
A. A.
Mamun
,
Phys. Plasmas
22
,
022111
(
2015
).
40.
M. G.
Shah
,
A. A.
Mamun
, and
M. R.
Hossen
,
J. Korean Phys. Soc.
66
,
1239
(
2015
).
41.
A. A.
Mamun
and
F.
Deeba
,
Plasma Phys. Rep.
41
,
667
(
2015
).
42.
S. A.
Ema
,
M. R.
Hossen
, and
A. A.
Mamun
,
Contrib. Plasma Phys.
55
,
596
(
2015
).
43.
44.
T.
Kakutani
,
H.
Ono
,
T.
Taniuti
, and
C.-C.
Wei
,
J. Phys. Soc. Jpn.
24
,
1159
(
1968
).
45.
B. B.
Kadomtsev
and
V. I.
Petviashvili
,
Sov. Phys. JETP
16
,
1578
(
1963
).
46.
V. E.
Zakharov
and
E. A.
Kuznetsov
,
Sov. Phys. JETP
39
,
285
(
1974
).
47.
F.
Calogero
and
A.
Degasperis
,
Lett. Nuovo Cimento
23
,
150
(
1978
).
You do not currently have access to this content.