In this study, we calculate the radial transport of the toroidal angular momentum in the presence of non-axisymmetric magnetic fields. It is shown that the radial transport of the toroidal angular momentum, , is proportional to the first order of gyro-radius. This implies that the neoclassical toroidal viscosity caused by asymmetric magnetic fields can change the toroidal rotation significantly.
References
1.
K. C.
Shaing
, “Magnetohydrodynamic-activity-induced toroidal momentum dissipation in collisionless regimes in tokamaks
,” Phys. Plasmas
10
(5
), 1443
–1448
(2003
).2.
K. C.
Shaing
, P.
Cahyna
, M.
Becoulet
, J. K.
Park
, S. A.
Sabbagh
, and M. S.
Chu
, “Collisional boundary layer analysis for neoclassical toroidal plasma viscosity in tokamaks
,” Phys. Plasmas
15
(8
), 082506
(2008
).3.
J.-K.
Park
, A. H.
Boozer
, and J. E.
Menard
, “Nonambipolar transport by trapped particles in tokamaks
,” Phys. Rev. Lett.
102
(6
), 065002
(2009
).4.
K. C.
Shaing
, K.
Ida
, and S. A.
Sabbagh
, “Neoclassical plasma viscosity and transport processes in non-axisymmetric tori
,” Nucl. Fusion
55
(12
), 125001
(2015
).5.
S. V.
Kasilov
, W.
Kernbichler
, A. F.
Martitsch
, H.
Maassberg
, and M. F.
Heyn
, “Evaluation of the toroidal torque driven by external non-resonant non-axisymmetric magnetic field perturbations in a tokamak
,” Phys. Plasmas
21
(9
), 092506
(2014
).6.
K.
Kim
, J.-K.
Park
, G. J.
Kramer
, and A. H.
Boozer
, “δf Monte Carlo calculation of neoclassical transport in perturbed tokamaks
,” Phys. Plasmas
19
(8
), 082503
(2012
).7.
Y.
Sun
, Y.
Liang
, K. C.
Shaing
, H. R.
Koslowski
, C.
Wiegmann
, and T.
Zhang
, “Neoclassical toroidal plasma viscosity torque in collisionless regimes in tokamaks
,” Phys. Rev. Lett.
105
(14
), 145002
(2010
).8.
Y.
Sun
, Y.
Liang
, H. R.
Koslowski
, S.
Jachmich
, A.
Alfier
, O.
Asunta
, G.
Corrigan
, C.
Giroud
, M. P.
Gryaznevich
, D.
Harting
, T.
Hender
, E.
Nardon
, V.
Naulin
, V.
Parail
, T.
Tala
, C.
Wiegmann
, S.
Wiesen
, and JET-EFDA Contributors
, “Toroidal rotation braking with n = 1 magnetic perturbation field on JET
,” Plasma Phys. Controlled Fusion
52
(10
), 105007
(2010
).9.
W.
Zhu
, S. A.
Sabbagh
, R. E.
Bell
, J. M.
Bialek
, M. G.
Bell
, B. P.
LeBlanc
, S. M.
Kaye
, F. M.
Levinton
, J. E.
Menard
, K. C.
Shaing
, A. C.
Sontag
, and H.
Yuh
, “Observation of plasma toroidal-momentum dissipation by neoclassical toroidal viscosity
,” Phys. Rev. Lett.
96
(22
), 225002
(2006
).10.
A. J.
Cole
, J. D.
Callen
, W. M.
Solomon
, A. M.
Garofalo
, C. C.
Hegna
, M. J.
Lanctot
, and H.
Reimerdes
, “Observation of peak neoclassical toroidal viscous force in the DIII-D tokamak
,” Phys. Rev. Lett.
106
(22
), 225002
(2011
).11.
J.
Seol
, S. G.
Lee
, B. H.
Park
, H. H.
Lee
, L.
Terzolo
, K. I.
You
, G. S.
Yun
, C. C.
Kim
, K. D.
Lee
, W. H.
Ko
, J. G.
Kwak
, W. C.
Kim
, Y. K.
Oh
, J. Y.
Kim
, S. S.
Kim
, and K.
Ida
, “Effects of electron-cyclotron-resonance-heating-induced internal kink mode on the toroidal rotation in the KSTAR tokamak
,” Phys. Rev. Lett.
109
(19
), 195003
(2012
).12.
W. M.
Stacey
, “Viscous damping of toroidal angular momentum in tokamaks
,” Phys. Plasmas
21
(9
), 092517
(2014
).13.
W. M.
Stacey
and C.
Bae
, “Extension of the flow-rate-of-strain tensor formulation of plasma rotation theory to non-axisymmetric tokamaks
,” Phys. Plasmas
22
(6
), 062503
(2015
).14.
J. D.
Callen
, “Effects of 3D magnetic perturbations on toroidal plasmas
,” Nucl. Fusion
51
(9
), 094026
(2011
).15.
16.
R. D.
Hazeltine
, “Radial transport with perturbed magnetic field
,” Phys. Plasmas
22
(5
), 052501
(2015
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.