This paper focuses on the numerical investigation of arc characteristics in an air direct current circuit breaker (air DCCB). Using magneto-hydrodynamics (MHD) theory, 3D laminar model and turbulence model are constructed and calculated. The standard k-epsilon model is utilized to consider the turbulence effect in the arc chamber of the DCCB. Several important phenomena are found: the arc column in the turbulence-model case is more extensive, moves much more slowly than the counterpart in the laminar-model case, and shows stagnation at the entrance of the chamber, unlike in the laminar-model case. Moreover, the arc voltage in the turbulence-model case is much lower than in the laminar-model case. However, the results in the turbulence-model case show a much better agreement with the results of the breaking experiments under DC condition than in the laminar-model case, which is contradictory to the previous conclusions from the arc researches of both the low-voltage circuit breaker and the sulfur hexafluoride (SF6) nozzle. First, in the previous air-arc research of the low-voltage circuit breaker, it is assumed that the air plasma inside the chamber is in the state of laminar, and the laminar-model application gives quite satisfactory results compared with the experiments, while in this paper, the laminar-model application works badly. Second, the turbulence-model application in the arc research of the SF6-nozzle performs much better and gives higher arc voltage than the laminar-model application does, whereas in this paper, the turbulence-model application predicts lower arc voltage than the laminar-model application does. Based on the analysis of simulation results in detail, the mechanism of the above phenomena is revealed. The transport coefficients are strongly changed by turbulence, which will enhance the arc diffusion and make the arc volume much larger. Consequently, the arc appearance and the distribution of Lorentz force in the turbulence-model case substantially differ from the arc appearance and the distribution of Lorentz force in the laminar-model case. Thus, the moving process of the arc in the turbulence-model case is slowed down and slower than in the laminar-model case. Moreover, the more extensive arc column in the turbulence-model case reduces the total arc resistance, which results in a lower arc voltage, more consistent with the experimental results than the arc voltage in the laminar-model case. Therefore, the air plasma inside this air DCCB is believed to be in the turbulence state, and the turbulence model is more suitable than the laminar model for the arc simulation of this kind of air DCCB.

1.
F.
Yang
,
Y.
Wu
,
M.
Rong
,
H.
Sun
,
A. B.
Murphy
,
Z.
Ren
, and
C.
Niu
,
J. Phys. D: Appl. Phys.
46
(
27
),
273001
(
2013
).
2.
Q.
Zhou
,
H.
Li
,
X.
Xu
,
F.
Liu
,
S.
Guo
,
X.
Chang
,
W.
Guo
, and
P.
Xu
,
J. Phys. D: Appl. Phys.
42
(
1
),
015210
(
2009
).
3.
A. A.
El-Hadj
and
N.
Ait-Messaoudene
,
Plasma Chem. Plasma Process.
25
(
6
),
699
722
(
2005
).
4.
J.
Bauchire
,
J.
Gonzalez
, and
A.
Gleizes
,
Plasma Chem. Plasma Process.
17
(
4
),
409
432
(
1997
).
5.
R. L.
Williamson
,
J. R.
Fincke
, and
C. H.
Chang
,
J. Thermal Spray Technol.
11
(
1
),
107
118
(
2002
).
6.
Y.
Takahashi
,
H.
Kihara
, and
K.-I.
Abe
,
J. Phys. D: Appl. Phys.
44
(
8
),
085203
(
2011
).
7.
Q.
Zhang
,
J.
Yan
, and
M.
Fang
,
J. Phys. D: Appl. Phys.
46
(
16
),
165203
(
2013
).
8.
Q.
Zhang
,
J.
Yan
, and
M.
Fang
,
J. Phys. D: Appl. Phys.
47
(
21
),
215201
(
2014
).
9.
J.
Yan
,
K.
Nuttall
, and
M.
Fang
,
J. Phys. D: Appl. Phys.
32
(
12
),
1401
(
1999
).
10.
J.
Lee
and
J.-C.
Lee
,
Vacuum
86
(
10
),
1522
1527
(
2012
).
11.
J.-J.
Gonzalez
,
P.
Freton
,
F.
Reichert
, and
D.
Randrianarivao
,
IEEE Trans. Plasma Sci.
40
(
3
),
936
945
(
2012
).
12.
M.
Fang
,
S.
Ramakrishnan
, and
H.
Messerle
,
IEEE Trans. Plasma Sci.
8
(
4
),
357
362
(
1980
).
13.
D.
Leseberg
, “
Holographische interferometrie und optische spektroskopie an einem SF6-schaltlichtbogen
,”
1982
.
14.
N. T.
Basse
,
C.
Kissing
, and
R.
Bini
,
J. Phys. D: Appl. Phys.
44
(
24
),
245201
(
2011
).
15.
Q.
Zhang
,
J.
Liu
, and
J. D.
Yan
,
IEEE Trans. Plasma Sci.
42
(
10
),
2726
2727
(
2014
).
16.
Y.
Pei
,
J.
Zhong
,
J.
Zhang
, and
J.
Yan
,
J. Phys. D: Appl. Phys.
47
(
33
),
335201
(
2014
).
17.
M.
Fang
,
Q.
Zhuang
, and
X.
Guo
,
J. Phys. D: Appl. Phys.
27
(
1
),
74
(
1994
).
18.
J. D.
Yan
,
M. T.
Fang
, and
W.
Hall
,
IEEE Trans. Power Delivery
14
(
1
),
176
181
(
1999
).
19.
M.
Fang
and
Q.
Zhuang
,
J. Phys. D: Appl. Phys.
25
(
8
),
1197
(
1992
).
20.
P.
Shayler
and
M.
Fang
, presented at the
IEE Proceedings C
(Generation, Transmission and Distribution),
1980
.
21.
M.
Rong
,
Q.
Ma
,
Y.
Wu
,
T.
Xu
, and
A. B.
Murphy
,
J. Appl. Phys.
106
(
2
),
023308
(
2009
).
22.
Y.
Wu
,
M.
Rong
,
X.
Li
,
A. B.
Murphy
,
X.
Wang
,
F.
Yang
, and
Z.
Sun
,
IEEE Trans. Plasma Sci.
36
(
5
),
2831
2837
(
2008
).
23.
F.
Yang
,
M.
Rong
,
Y.
Wu
,
A. B.
Murphy
,
S.
Chen
,
Z.
Liu
, and
Q.
Shi
,
IEEE Trans. Plasma Sci.
38
(
11
),
3219
3225
(
2010
).
24.
F.
Yang
,
M.
Rong
,
Y.
Wu
,
A. B.
Murphy
,
J.
Pei
,
L.
Wang
,
Z.
Liu
, and
Y.
Liu
,
J. Phys. D: Appl. Phys.
43
(
43
),
434011
(
2010
).
25.
M.
Rong
,
F.
Yang
,
Y.
Wu
,
A. B.
Murphy
,
W.
Wang
, and
J.
Guo
,
IEEE Trans. Plasma Sci.
38
(
9
),
2306
2311
(
2010
).
26.
F.
Karetta
and
M.
Lindmayer
, presented at the
Proceedings of the Forty-Second IEEE Holm Conference on the Electrical Contacts
,
1996
; Joint with the 18th International Conference on Electrical Contacts, 1996.
27.
A.
Mutzke
,
T.
Rüther
,
M.
Lindmayer
, and
M.
Kurrat
,
Eur. Phys. J. Appl. Phys.
49
(
02
),
22910
(
2010
).
28.
M.
Lindmayer
,
E.
Marzahn
,
A.
Mutzke
,
T.
Rüther
, and
M.
Springstubbe
,
IEEE Trans. Compon. Packag. Technol.
29
(
2
),
310
317
(
2006
).
29.
M.
Lindmayer
and
M.
Springstubbe
,
IEEE Trans. Compon. Packag. Technol.
25
(
3
),
409
414
(
2002
).
30.
M.
Lindmayer
and
M.
Springstubbe
, presented at the
Proceedings of the Forty-Seventh IEEE Holm Conference on Electrical Contacts
(
2001
).
31.
J.
McBride
and
P.
Weaver
,
IEE Proc. Sci. Meas. Technol.
148
(
1
),
1
7
(
2001
).
32.
B.
Swierczynski
,
J.
Gonzalez
,
P.
Teulet
,
P.
Freton
, and
A.
Gleizes
,
J. Phys. D: Appl. Phys.
37
(
4
),
595
(
2004
).
33.
J.
Gonzalez
,
B.
Swierczynski
,
P.
Freton
,
A.
Gleizes
, and
P.
Teulet
,
High Temp. Mater. Processes
9
(
1
),
17
23
(
2005
).
34.
A.
Gleizes
,
J.-J.
Gonzalez
, and
P.
Freton
,
J. Phys. D: Appl. Phys.
38
(
9
),
R153
(
2005
).
35.
P.
Freton
and
J.-J.
Gonzalez
,
Open Plasma Phys. J.
2
,
105
119
(
2009
).
36.
Y.
Fei
,
M.
Ruiguang
,
W.
Yi
,
S.
Hao
,
N.
Chunping
, and
R.
Mingzhe
,
Plasma Sci. Technol.
14
(
2
),
167
(
2012
).
37.
Y.
Fei
,
R.
Mingzhe
,
W.
Yi
,
S.
Hao
,
M.
Ruiguang
, and
N.
Chunping
,
Plasma Sci. Technol.
14
(
11
),
974
(
2012
).
38.
Y.
Wu
,
M.
Rong
,
F.
Yang
,
A. B.
Murphy
,
Q.
Ma
,
Z.
Sun
, and
X.
Wang
,
IEEE Trans. Plasma Sci.
36
(
4
),
1074
1075
(
2008
).
39.
Y.
Wu
,
M.
Rong
,
Z.
Sun
,
X.
Wang
,
F.
Yang
, and
X.
Li
,
J. Phys. D: Appl. Phys.
40
(
3
),
795
(
2007
).
40.
W.
Yi
,
R.
Mingzhe
,
Y.
Qian
, and
H.
Guangxia
,
Plasma Sci. Technol.
7
(
4
),
2977
(
2005
).
41.
F.
Karetta
and
M.
Lindmayer
,
IEEE Trans. Compon. Packag. Manuf. Technol.
21
(
1
),
96
103
(
1998
).
42.
R. E.
Meyerott
,
J.
Sokoloff
, and
R.
Nicholls
, U. S. Weather Bureau, Report No. 68, 1960.
43.
B.
Armstrong
,
J.
Sokoloff
,
R.
Nicholls
,
D.
Holland
, and
R.
Meyerott
,
J. Quant. Spectrosc. Radiat. Transfer
1
(
2
),
143
162
(
1961
).
44.
D.
Churchill
,
S.
Hagstrom
, and
R.
Landshoff
,
J. Quant. Spectrosc. Radiat. Transfer
4
(
2
),
291
321
(
1964
).
45.
D.
Churchill
,
B.
Armstrong
,
R.
Johnston
, and
K.
Müller
,
J. Quant. Spectrosc. Radiat. Transfer
6
(
4
),
371
442
(
1966
).
46.
R.
Siegel
,
J. R.
Howell
, and
J.
Lohrengel
,
Wärmeübertragung Durch Strahlung: Teil 1
(
Springer-Verlag
,
Berlin, Germany
,
1988
).
47.
R.
Siegel
,
J. R.
Howell
, and
J.
Lohrengel
,
Wärmeübertragung Durch Strahlung: Teil 3
(
Springer-Verlag
,
Berlin, Heidelberg
,
1993
).
48.
A.
Murphy
,
Plasma Chem. Plasma Process.
15
(
2
),
279
307
(
1995
).
49.
W.
Wei-Zong
,
W.
Yi
,
R.
Ming-Zhe
, and
Y.
Fei
,
Acta Phys. Sin.
61
(10),
105201
(
2012
).
50.
A.
Mutzke
,
T.
Ruther
,
M.
Kurrat
,
M.
Lindmayer
, and
E.-D.
Wilkening
, presented at the
53rd IEEE Holm Conference on the Electrical Contacts
(
2007
).
51.
W.
Jones
and
B.
Launder
,
Int. J. Heat Mass Transfer
15
(
2
),
301
314
(
1972
).
52.
D. A.
Wilcox
,
AIAA J.
32
(
2
),
247
255
(
1994
).
53.
N.
Markatos
,
Appl. Math. Model.
10
(
3
),
190
220
(
1986
).
54.
B. E.
Launder
and
D.
Spalding
,
Comp. Methods Appl. Mech. Eng.
3
(
2
),
269
289
(
1974
).
55.
F. H.
Harlow
and
P. I.
Nakayama
,
Phys. Fluids (1958–1988)
10
(
11
),
2323
2332
(
1967
).
56.
F. R.
Menter
,
AIAA J.
32
(
8
),
1598
1605
(
1994
).
57.
F.
Cayla
,
P.
Freton
, and
J.-J.
Gonzalez
,
IEEE Trans. Plasma Sci.
36
(
4
),
1944
1954
(
2008
).
58.
J.
Viegas
,
M.
Rubesin
, and
C.
Horstman
, AIAA Paper No. 85-0180,
1985
.
59.
S.-E.
Kim
and
D.
Choudhury
,
Separated Complex Flows
1995
,
273
280
.
60.
D. C.
Wilcox
,
AIAA J.
31
(
8
),
1414
1421
(
1993
).
You do not currently have access to this content.