An experimental investigation of the laser produced plasma induced shock wave in the presence of confining walls placed along the axial as well as the lateral direction has been performed. A time resolved Mach Zehnder interferometer is set up to track the primary as well as the reflected shock waves and its effect on the evolving plasma plume has been studied. An attempt has been made to discriminate the electronic and medium density contributions towards the changes in the refractive index of the medium. Two dimensional spatial distributions for both ambient medium density and plasma density (electron density) have been obtained by employing customised inversion technique and algorithm on the recorded interferograms. The observed density pattern of the surrounding medium in the presence of confining walls is correlated with the reflected shock wave propagation in the medium. Further, the shock wave plasma interaction and the subsequent changes in the shape and density of the plasma plume in confined geometry are briefly described.

1.
M. F.
Becker
,
J. R.
Brock
,
H.
Cai
,
D. E.
Henneke
,
J. W.
Keto
,
J.
Lee
,
W. T.
Nichols
, and
H. D.
Glicksman
,
Nanostruct. Mater.
10
,
853
(
1998
).
2.
T.
Tsuji
,
K.
Iryo
,
N.
Watanabe
, and
M.
Tsuji
,
Appl. Surf. Sci.
202
,
80
(
2002
).
3.
B.
Kumar
and
R. K.
Thareja
,
J. Appl. Phys.
108
,
064906
(
2010
).
4.
H.
Zeng
,
X.-W.
Du
,
S. C.
Singh
,
S. A.
Kulinich
,
S.
Yang
,
J.
He
, and
W.
Cai
,
Adv. Funct. Mater.
22
,
1333
(
2012
).
5.
D. A.
Rusak
,
B. C.
Castle
,
B. W.
Smith
, and
J. D.
Winefordner
, TrAC,
Trends Anal. Chem.
17
,
453
(
1998
).
6.
F.
Kokai
,
K.
Takahashi
,
K.
Shimizu
,
M.
Yudasaka
, and
S.
Iijima
,
Appl. Phys. A: Mater. Sci. Process.
69
,
S223
(
1999
).
7.
K.
Song
,
D.
Kim
,
H.
Cha
,
Y.
Kim
,
E. C.
Jung
,
I.
Choi
,
H. S.
Yoo
, and
S.
Oh
,
Microchem. J.
76
,
95
(
2004
).
8.
A. C.
Woods
and
C. G.
Parigger
,
J. Phys. Conf. Ser.
548
,
012053
(
2014
).
9.
R. F.
Cozzens
and
R. B.
Fox
,
Polym. Eng. Sci.
18
,
900
(
1978
).
10.
P. E.
Dyer
and
J.
Sidhu
,
J. Appl. Phys.
64
,
4657
(
1988
).
11.
S.
Amoruso
,
R.
Bruzzese
,
N.
Spinelli
, and
R.
Velotta
,
J. Phys. B
32
,
R131
(
1999
).
12.
J. P.
Chen
,
X. W.
Ni
,
J.
Lu
, and
B. M.
Bian
,
Opt. Commun.
176
,
437
(
2000
).
13.
Z.
Zhang
and
G.
Gogos
,
Phys. Rev. B
69
,
235403
(
2004
).
14.
C.
Phelps
,
C. J.
Druffner
,
G. P.
Perram
, and
R. R.
Biggers
,
J. Phys. D: Appl. Phys.
40
,
4447
(
2007
).
15.
A. G.
Doukas
and
T. J.
Flotte
,
Ultrasound Med. Biol.
22
,
151
(
1996
).
16.
R.
Fabbro
,
J.
Fournier
,
P.
Ballard
,
D.
Devaux
, and
J.
Virmont
,
J. Appl. Phys.
68
,
775
(
1990
).
17.
L. B.
Guo
,
C. M.
Li
,
W.
Hu
,
Y. S.
Zhou
,
B. Y.
Zhang
,
Z. X.
Cai
,
X. Y.
Zeng
, and
Y. F.
Lu
,
Appl. Phys. Lett.
98
,
131501
(
2011
).
18.
S.
George
,
R. K.
Singh
,
V. P. N.
Nampoori
, and
A.
Kumar
,
Phys. Lett. Sect. A: Gen. At. Solid State Phys.
377
,
391
(
2013
).
19.
S.
George
,
A.
Kumar
,
R. K.
Singh
, and
V. P. N.
Nampoori
,
Appl. Phys. Lett.
94
,
141501
(
2009
).
20.
A.
Kumar
,
R. K.
Singh
,
V.
Prahlad
, and
H. C.
Joshi
,
J. Appl. Phys.
104
,
093302
(
2008
).
21.
P.
Yeates
and
E. T.
Kennedy
,
Phys. Plasmas
18
,
063106
(
2011
).
22.
X.
Zeng
,
X.
Mao
,
S. S.
Mao
,
S.-B.
Wen
,
R.
Greif
, and
R. E.
Russo
,
Appl. Phys. Lett.
88
,
061502
(
2006
).
23.
P.
Yeates
and
E. T.
Kennedy
,
Phys. Plasmas
17
,
093104
(
2010
).
24.
B.
Kumar
,
R. K.
Singh
, and
A.
Kumar
,
Phys. Plasmas
20
,
083511
(
2013
).
25.
S.-B.
Wen
,
X.
Mao
,
R.
Greif
, and
R. E.
Russo
,
J. Appl. Phys.
101
,
023114
(
2007
).
26.
A. E.
Hussein
,
P. K.
Diwakar
,
S. S.
Harilal
, and
A.
Hassanein
,
J. Appl. Phys.
113
,
143305
(
2013
).
27.
T. Y. K.
Hirano
,
C.
Matsumoto
, and
K.
Shimoda
,
Japanese Journal of Applied Physics
24
,
1518
(
1985
).
28.
Y.
Tao
,
M. S.
Tillack
,
S. S.
Harilal
,
K. L.
Sequoia
,
B.
O'Shay
, and
F.
Najmabadi
,
J. Phys. D: Appl. Phys.
39
,
4027
(
2006
).
29.
H.
Zhang
,
J.
Lu
,
Z.
Shen
, and
X.
Ni
,
Opt. Commun.
282
,
1720
(
2009
).
30.
S. S.
Harilal
,
G. V.
Miloshevsky
,
P. K.
Diwakar
,
N. L.
Lahaye
, and
A.
Hassanein
,
Phys. Plasmas
19
,
083504
(
2012
).
31.
Q.
Kemao
,
Opt. Lasers Eng.
45
,
304
(
2007
).
32.
Q.
Kemao
,
W.
Gao
, and
H.
Wang
,
Applied Optics
47
,
5420
(
2008
).
33.
S.
Mohanan
and
A.
Srivastava
,
Appl. Opt.
53
,
2331
(
2014
).
34.
A.
Srivastava
,
K.
Tsukamoto
,
E.
Yokoyama
,
K.
Murayama
, and
M.
Fukuyama
,
J. Cryst. Growth
312
,
2254
(
2010
).
35.
U. S.
Bhapkar
,
S.
Mohanan
,
A.
Agrawal
, and
A.
Srivastava
,
Int. Commun. Heat Mass Transfer
58
,
118
(
2014
).
36.
K. E.
Paul
,
D.
Haridas
, and
A.
Srivastava
,
Int. J. Therm. Sci.
96
,
70
(
2015
).
37.
D.
Haridas
,
N. S.
Rajput
, and
A.
Srivastava
,
Int. J. Heat Mass Transfer
88
,
713
(
2015
).
38.
S.
Ma
,
H.
Gao
, and
L.
Wu
,
Appl. Opt.
47
,
1350
(
2008
).
39.
S.
Ma
,
Appl. Opt.
50
,
6512
(
2011
).
40.
Y.
Liu
and
P. H.
Daum
,
J. Aerosol Science
39
,
974
(
2008
).
41.
M.
Born
and
E.
Wolf
,
Principles of Optics
(
Cambridge University Press
,
2000
).
42.
A. W. J.
Burner
and
W.
Goad
, NASA Techinal Memorandum No. 80228 (
1980
).
43.
M. J.
Madsen
,
D. R.
Brown
,
S. R.
Krutz
, and
M. J.
Milliman
,
Am. J. Phys.
79
,
428
(
2011
).
44.
H.
Hornung
,
Annu. Rev. Fluid Mech.
18
,
33
(
1986
).
You do not currently have access to this content.