This paper analyzes and evaluates a concept for remotely detecting the presence of radioactivity using electromagnetic signatures. The detection concept is based on the use of laser beams and the resulting electromagnetic signatures near the radioactive material. Free electrons, generated from ionizing radiation associated with the radioactive material, cascade down to low energies and attach to molecular oxygen. The resulting ion density depends on the level of radioactivity and can be readily photo-ionized by a low-intensity laser beam. This process provides a controllable source of seed electrons for the further collisional ionization (breakdown) of the air using a high-power, focused, CO2 laser pulse. When the air breakdown process saturates, the ionizing CO2 radiation reflects off the plasma region and can be detected. The time required for this to occur is a function of the level of radioactivity. This monostatic detection arrangement has the advantage that both the photo-ionizing and avalanche laser beams and the detector can be co-located.

1.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
, 84th ed. (
Taylor & Francis
,
2003
).
2.
Y. S.
Dimant
,
G. S.
Nusinovich
,
P.
Sprangle
,
J.
Penano
,
C. A.
Romero-Talamas
, and
V. L.
Granatstein
,
J. Appl. Phys.
112
,
083303
(
2012
).
3.
W. A.
Hoppel
,
R. V.
Anderson
, and
J. C.
Willett
,
The Earth's Electrical Environment
(
The National Academies Press
,
1986
), p.
149
.
4.
V. L.
Granatstein
and
G. S.
Nusinovich
,
J. Appl. Phys.
108
,
063304
(
2010
).
5.
G. S.
Nusinovich
,
P.
Sprangle
,
C. A.
Romero-Talamas
, and
V. L.
Granatstein
,
J. Appl. Phys.
109
,
083303
(
2011
).
6.
P.
Sprangle
,
B.
Hafizi
,
H.
Milchberg
,
G.
Nusinovich
, and
A.
Zigler
,
Phys. Plasmas
21
,
013103
(
2014
).
7.
L. G.
Christophorou
,
Atomic and Molecular Radiation Physics
(
Wiley-Interscience
,
London, UK
,
1971
).
8.
A. M.
Howatson
,
An Introduction to Gas Discharges: Pergamon International Library of Science, Technology, Engineering and Social Studies
(
Elsevier Science
,
2013
).
9.
S.
Pancheshnyi
,
Plasma Sources Sci. Technol.
14
,
645
(
2005
).
10.
M. V.
Ivashchenko
,
A. I.
Karapuzikov
,
A. N.
Malov
, and
I. V.
Sherstov
,
Instrum. Exp. Tech.
43
,
119
(
2000
).
11.
A. W.
Ali
,
NRL Memorandum Report No. 5187
,
1983
.
12.
C. H.
Chan
,
C. D.
Moody
, and
W. B.
McKnight
,
J. Appl. Phys.
44
,
1179
(
1973
).
13.
L. G.
Christophorou
and
L. A.
Pinnaduwage
,
IEEE Trans. Electr. Insul.
25
,
55
(
1990
).
14.
J. D.
Huba
,
NRL Plasma Formulary Supported by The Office of Naval Research
(
Naval Research Laboratory
,
Washington, DC
,
2013
), pp.
1
71
.
15.
D. C.
Smith
and
R. T.
Brown
,
J. Appl. Phys.
46
,
1146
(
1975
).
16.
N.
Jhajj
,
E. W.
Rosenthal
,
R.
Birnbaum
,
J. K.
Wahlstrand
, and
H. M.
Milchberg
,
Phys. Rev. X
4
,
011027
(
2014
).
17.
A. W.
Ali
,
NRL Memorandum Report No. 5400
,
1984
.
18.
R.
Fernsler
,
A.
Ali
,
J.
Greig
, and
I.
Vitkovitsky
,
NRL Memorandum Report No. 4110
,
1979
.
19.
I. A. B.
Zel'dovich
and
Y. P.
Raizer
,
Physics of Shock Waves and High Temperature Hydrodynamic Phenomena
(
Dover Publications
,
2002
).
20.
R. W.
Schunk
and
A. F.
Nagy
,
Ionospheres
(
Cambridge University Press
,
2000
).
You do not currently have access to this content.