A new spectral particle-in-cell (PIC) method for plasma modeling is presented and discussed. In the proposed scheme, the Fourier-Bessel transform is used to translate the Maxwell equations to the quasi-cylindrical spectral domain. In this domain, the equations are solved analytically in time, and the spatial derivatives are approximated with high accuracy. In contrast to the finite-difference time domain (FDTD) methods, that are used commonly in PIC, the developed method does not produce numerical dispersion and does not involve grid staggering for the electric and magnetic fields. These features are especially valuable in modeling the wakefield acceleration of particles in plasmas. The proposed algorithm is implemented in the code PLARES-PIC, and the test simulations of laser plasma interactions are compared to the ones done with the quasi-cylindrical FDTD PIC code CALDER-CIRC.

1.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
CRC Press
,
1988
).
2.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics via Computer Simulation
, Series in Plasma Physics (
Taylor & Francis
,
2004
).
3.
A.
Taflove
and
S. C.
Hagness
,
Computational Electrodynamics: The Finite-Difference Time-Domain Method
, 3rd ed. (
Artech House
,
Norwood, MA
,
2005
).
4.
R.
Lehe
,
A.
Lifschitz
,
C.
Thaury
,
V.
Malka
, and
X.
Davoine
, “
Numerical growth of emittance in simulations of laser-wakefield acceleration
,”
Phys. Rev. ST Accel. Beams
16
,
021301
(
2013
).
5.
R.
Nuter
,
M.
Grech
,
P.
Gonzalez de Alaiza Martinez
,
G.
Bonnaud
, and
E.
d'Humieres
, “
Maxwell solvers for the simulations of the laser-matter interaction
,”
Eur. Phys. J. D
68
,
177
(
2014
).
6.
R.
Nuter
and
V.
Tikhonchuk
, “
Suppressing the numerical Cherenkov radiation in the Yee numerical scheme
,”
J. Comput. Phys.
305
,
664
676
(
2016
).
7.
B. B.
Godfrey
and
J.-L.
Vay
, “
Suppressing the numerical Cherenkov instability in {FDTD} {PIC} codes
,”
J. Comput. Phys.
267
,
1
6
(
2014
).
8.
R.
Lehe
,
C.
Thaury
,
E.
Guillaume
,
A.
Lifschitz
, and
V.
Malka
, “
Laser-plasma lens for laser-wakefield accelerators
,”
Phys. Rev. ST Accel. Beams
17
,
121301
(
2014
).
9.
E.
Esarey
,
C. B.
Schroeder
, and
W. P.
Leemans
, “
Physics of laser-driven plasma-based electron accelerators
,”
Rev. Mod. Phys.
81
,
1229
1285
(
2009
).
10.
M.
Litos
,
E.
Adli
,
W.
An
,
C. I.
Clarke
,
C. E.
Clayton
,
S.
Corde
,
J. P.
Delahaye
,
R. J.
England
,
A. S.
Fisher
,
J.
Frederico
,
S.
Gessner
,
S. Z.
Green
,
M. J.
Hogan
,
C.
Joshi
,
W.
Lu
,
K. A.
Marsh
,
W. B.
Mori
,
P.
Muggli
,
N.
Vafaei-Najafabadi
,
D.
Walz
,
G.
White
,
Z.
Wu
,
V.
Yakimenko
, and
G.
Yocky
, “
High-efficiency acceleration of an electron beam in a plasma wakefield accelerator
,”
Nature
515
,
92
95
(
2014
).
11.
S.
Corde
,
E.
Adli
,
J. M.
Allen
,
W.
An
,
C. I.
Clarke
,
C. E.
Clayton
,
J. P.
Delahaye
,
J.
Frederico
,
S.
Gessner
,
S. Z.
Green
,
M. J.
Hogan
,
C.
Joshi
,
N.
Lipkowitz
,
M.
Litos
,
W.
Lu
,
K. A.
Marsh
,
W. B.
Mori
,
M.
Schmeltz
,
N.
Vafaei-Najafabadi
,
D.
Walz
,
V.
Yakimenko
, and
G.
Yocky
, “
Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield
,”
Nature
524
,
442
445
(
2015
).
12.
S.
Corde
,
K.
Ta Phuoc
,
G.
Lambert
,
R.
Fitour
,
V.
Malka
,
A.
Rousse
,
A.
Beck
, and
E.
Lefebvre
, “
Femtosecond x rays from laser-plasma accelerators
,”
Rev. Mod. Phys.
85
,
1
48
(
2013
).
13.
I.
Haber
,
R.
Lee
,
H.
Klein
, and
J.
Boris
, “
Advances in electromagnetic simulation techniques
,” in
Proceedings of the Sixth Conference on Numerical Simulation of Plasmas, Berkeley, CA, 1973
, pp.
46
48
.
14.
Q. H.
Liu
, “
The PSTD algorithm: A time-domain method requiring only two cells per wavelength
,”
Microwave Opt. Technol. Lett.
15
(
3
),
158
165
(
1997
).
15.
J.-L.
Vay
,
I.
Haber
, and
B. B.
Godfrey
, “
A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas
,”
J. Comput. Phys.
243
,
260
268
(
2013
).
16.
A. F.
Lifschitz
,
X.
Davoine
,
E.
Lefebvre
,
J.
Faure
,
C.
Rechatin
, and
V.
Malka
, “
Particle-in-cell modelling of laser-plasma interaction using Fourier decomposition
,”
J. Comput. Phys.
228
(
5
),
1803
1814
(
2009
).
17.
A.
Davidson
,
A.
Tableman
,
W.
An
,
F. S.
Tsung
,
W.
Lu
,
J.
Vieira
,
R. A.
Fonseca
,
L. O.
Silva
, and
W. B.
Mori
, “
Implementation of a hybrid particle code with a {PIC} description in r-z and a gridless description in ϕ into {OSIRIS}
,”
J. Comput. Phys.
281
,
1063
1077
(
2015
).
18.
P.
Yu
,
X.
Xu
,
A.
Tableman
,
V. K.
Decyk
,
F. S.
Tsung
,
F.
Fiuza
,
A.
Davidson
,
J.
Vieira
,
R. A.
Fonseca
,
W.
Lu
,
L. O.
Silva
, and
W. B.
Mori
, “
Mitigation of numerical Cerenkov radiation and instability using a hybrid finite difference-FFT Maxwell solver and a local charge conserving current deposit
,”
Comput. Phys. Commun.
197
,
144
152
(
2015
).
19.
M.
Guizar-Sicairos
and
J. C.
Gutierrez-Vega
, “
Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields
,”
J. Opt. Soc. Am. A
21
(
1
),
53
(
2004
).
20.
M.
Veysman
,
B.
Cros
,
N. E.
Andreev
, and
G.
Maynard
, “
Theory and simulation of short intense laser pulse propagation in capillary tubes with wall ablation
,”
Phys. Plasmas
13
(
5
),
053114
(
2006
).
21.
I. A.
Andriyash
,
R.
Lehe
, and
V.
Malka
, “
A spectral unaveraged algorithm for free electron laser simulations
,”
J. Comput. Phys.
282
,
397
409
(
2015
).
22.
R.
Lehe
,
M.
Kirchen
,
I. A.
Andriyash
,
B. B.
Godfrey
, and
J.-L.
Vay
, “
A spectral, quasi-cylindrical and dispersion-free particle-in-cell algorithm
,”
Comput. Phys Commun.
(in press).
23.
L. D.
Landau
and
E. M.
Lifshitz
,
The Classical Theory of Fields
, Course of Theoretical Physics, 4th ed. (
Pergamon Press
,
1975
), Vol. 2.
24.
R. L.
Morse
and
C. W.
Nielson
, “
Numerical simulation of the Weibel instability in one and two dimensions
,”
Phys. Fluids
14
(
4
),
830
840
(
1971
).
25.
T. Zh.
Esirkepov
, “
Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor
,”
Comput. Phys. Commun.
135
(
2
),
144
153
(
2001
).
26.
R.
Kosloff
and
D.
Kosloff
, “
Absorbing boundaries for wave propagation problems
,”
J. Comput. Phys.
63
(
2
),
363
376
(
1986
).
27.
J. P.
Boris
, “
Relativistic plasma simulation - optimization of a hybrid code
,” in
Proceedings of the Fourth Conference on the Numerical Simulation of Plasma
,
1970
.
28.
S.
van der Walt
,
S. C.
Colbert
, and
G.
Varoquaux
, “
The numpy array: A structure for efficient numerical computation
,”
Comput. Sci. Eng.
13
(
2
),
22
30
(
2011
).
29.
J. D.
Hunter
, “
Matplotlib: A 2D graphics environment
,”
Comput. Sci. Eng.
9
(
3
),
90
95
(
2007
).
30.
P.
Peterson
, “
F2PY: A tool for connecting Fortran and Python programs
,”
Int. J. Comput. Sci. Eng.
4
(
4
),
296
305
(
2009
).
31.
M.
Frigo
and
S. G.
Johnson
, “
The design and implementation of FFTW3
,”
Proc. IEEE
93
,
216
231
(
2005
).
32.
L. D.
Dalcin
,
R. R.
Paz
,
P. A.
Kler
, and
A.
Cosimo
, “
Parallel distributed computing using Python
,”
Adv. Water Resour.
34
(
9
),
1124
1139
(
2011
).
33.
E.
Esarey
,
P.
Sprangle
,
M.
Pilloff
, and
J.
Krall
, “
Theory and group velocity of ultrashort, tightly focused laser pulses
,”
J. Opt. Soc. Am. B
12
(
9
),
1695
1703
(
1995
).
34.
L. M.
Gorbunov
and
V. I.
Kirsanov
, “
Excitation of plasma waves by an electromagnetic wave packet
,”
Sov. Phys. JETP
66
,
290
294
(
1987
), available at http://www.jetp.ac.ru/cgi-bin/e/index/e/66/2/p290?a=list.
35.
B.
Beaurepaire
,
A.
Lifschitz
, and
J.
Faure
, “
Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses
,”
New J. Phys.
16
(
2
),
023023
(
2014
).
36.
See supplementary material at http://dx.doi.org/10.1063/1.4943281 for the animated graphics of laser plasma acceleration with PLARES-PIC.

Supplementary Material

You do not currently have access to this content.