The propagation characteristics of various laser modes with different polarization, as well as the soliton generation in strongly magnetized plasmas are studied numerically through one-dimensional (1D) particle-in-cell (PIC) simulations and analytically by solving the laser wave equation. PIC simulations show that the laser heating efficiency substantially depends on the magnetic field strength, the propagation modes of the laser pulse and their intensities. Generally, large amplitude laser can efficiently heat the plasma with strong magnetic field. Theoretical analyses on the linear propagation of the laser pulse in both under-dense and over-dense magnetized plasmas are well confirmed by the numerical observations. Most interestingly, it is found that a standing or moving soliton with frequency lower than the laser frequency is generated in certain magnetic field strength and laser intensity range, which can greatly enhance the laser heating efficiency. The range of magnetic field strength for the right-hand circularly polarized (RCP) soliton formation with high and low frequencies is identified by solving the soliton equations including the contribution of ion's motion and the finite temperature effects under the quasi-neutral approximation. In the limit of immobile ions, the RCP soliton tends to be peaked and stronger as the magnetic field increases, while the enhanced soliton becomes broader as the temperature increases. These findings in 1D model are well validated by 2D simulations.

1.
S.
Fujioka
,
Z.
Zhang
,
K.
Ishihara
,
K.
Shigemori
,
Y.
Hironaka
,
T.
Johzaki
,
A.
Sunahara
,
N.
Yamamoto
,
H.
Nakashima
,
T.
Watanabe
,
H.
Shiraga
,
H.
Nishimura
, and
H.
Azechi
,
Sci. Rep.
3
,
1170
(
2013
).
2.
Y.
Nishida
,
M.
Yoshizumi
, and
R.
Sugihara
,
Phys. Fluids
28
,
1574
(
1985
).
3.
N.
Yugami
,
K.
Kikuta
, and
Y.
Nishida
,
Phys. Rev. Lett.
76
,
1635
(
1996
).
4.
H.
Chen
,
G.
Fiksel
,
D.
Barnak
,
P. Y.
Chang
,
R. F.
Heeter
,
A.
Link
, and
D. D.
Meyerhofer
,
Phys. Plasmas
21
,
040703
(
2014
).
5.
W. M.
Wang
,
P.
Gibbon
,
Z. M.
Sheng
, and
Y. T.
Li
,
Phys. Rev. Lett.
114
,
015001
(
2015
).
6.
P. Y.
Chang
,
G.
Fiksel
,
M.
Hohenberger
,
J. P.
Knauer
,
R.
Betti
,
F. J.
Marshall
,
D. D.
Meyerhofer
,
F. H.
Seguin
, and
R. D.
Petrasso
,
Phys. Rev. Lett.
107
,
035006
(
2011
).
7.
D.
Dorranian
,
M.
Starodubtsev
,
H.
Kawakami
,
H.
Ito
,
N.
Yugami
, and
Y.
Nishida
,
Phys. Rev. E
68
,
026409
(
2003
).
8.
P.
Jha
,
R. K.
Mishra
,
G.
Raj
, and
A. K.
Upadhyay
,
Phys. Plasmas
14
,
053107
(
2007
).
9.
P.
Sharma
and
R. P.
Sharma
,
Phys. Plasmas
19
,
122106
(
2012
).
10.
R. K.
Singh
and
R. P.
Sharma
,
Phys. Plasmas
21
,
113109
(
2014
).
11.
W. M.
Wang
,
P.
Gibbon
,
Z. M.
Sheng
, and
Y. T.
Li
,
Phys. Rev. Lett.
114
,
253901
(
2015
).
12.
L.
Bhasin
,
V. K.
Tripathi
, and
P.
Kumar
,
Phys. Plasmas
23
,
023101
(
2016
).
13.
V. I.
Karpman
and
E. M.
Krushkal
,
Sov. Phys. JETP
28
,
277
(
1969
).
14.
V. I.
Karpman
and
H.
Washimi
,
J. Plasma Phys.
18
,
173
(
1977
).
15.
V. I.
Berezhiani
and
D. D.
Tskhakaya
,
Fiz. Plazmy
7
,
675
(
1981
)
V. I.
Berezhiani
and
D. D.
Tskhakaya
, [
Sov. J. Plasma Phys.
7
,
369
(
1981
)].
16.
P. K.
Shukla
and
L.
Stenflo
,
Phys. Rev. A
30
,
2110
(
1984
).
17.
A.
Hasegawa
,
Phys. Fluids.
15
,
870
(
1972
).
18.
P. K.
Shukla
,
M. Y.
Yu
,
S. N.
Antani
, and
D. J.
Kaup
,
Phys. Rev. A
29
,
396
(
1984
).
19.
N.
Nagesha Rao
,
P. K.
Shukla
, and
M. Y.
Yu
,
Phys. Fluids
27
,
2664
(
1984
).
20.
J.
Borhanian
,
I.
Kourakis
, and
S.
Sobhanian
,
Phys. Lett. A
373
,
3667
(
2009
).
21.
M.
Borghesi
,
S.
Bulanov
,
D. H.
Campbell
,
R. J.
Clarke
,
T. Zh.
Esirkepov
,
M.
Galimberti
,
L. A.
Gizzi
,
A. J.
MacKinnon
,
N. M.
Naumova
,
F.
Pegoraro
,
H.
Ruhl
,
A.
Schiavi
, and
O.
Willi
,
Phys. Rev. Lett.
88
,
135002
(
2002
).
22.
S. V.
Bulanov
,
T. Zh.
Esirkepov
,
N. M.
Naumova
,
F.
Pegoraro
, and
V. A.
Vshivkov
,
Phys. Rev. Lett.
82
,
3440
(
1999
).
23.
V. A.
Kozlov
,
A. G.
Litvak
, and
E. V.
Suvorov
,
Sov. Phys. JETP
49
,
75
(
1979
).
24.
P. K.
Kaw
,
A.
Sen
, and
T.
Katsouleas
,
Phys. Rev. Lett.
68
,
3172
(
1992
).
25.
S.
Poornakala
,
A.
Das
,
A.
Sen
, and
P. K.
Kaw
,
Phys. Plasmas
9
,
1820
(
2002
).
26.
D.
Farina
and
S. V.
Bulanov
,
Plasma Phys. Rep.
27
,
641
(
2001
).
27.
D.
Farina
and
S. V.
Bulanov
,
Phys. Rev. Lett.
86
,
5289
(
2001
).
28.
D.
Farina
and
S. V.
Bulanov
,
Plasma Phys. Controlled Fusion
47
,
A73
(
2005
).
29.
S.
Poornakala
,
A.
Das
,
P. K.
Kaw
,
A.
Sen
,
Z. M.
Sheng
,
Y.
Sentoku
,
K.
Mima
, and
K.
Nishikawa
,
Phys. Plasmas
9
,
3802
(
2002
).
30.
M.
Lontano
,
S.
Bulanov
, and
J.
Koga
,
Phys. Plasmas
8
,
5113
(
2001
).
31.
G.
Sanchez-Arriaga
,
E.
Siminos
, and
E.
Lefebvre
,
Plasma Phys. Controlled Fusion
53
,
045011
(
2011
).
32.
G.
Sanchez-Arriaga
,
E.
Siminos
, and
E.
Lefebvre
,
Phys. Plasmas
18
,
082304
(
2011
).
33.
D.
Farina
,
M.
Lontano
, and
S.
Bulanov
,
Phys. Rev. E
62
,
4146
(
2000
).
34.
Y.
Kishimoto
and
T.
Masaki
,
J. Plasmas Phys.
72
,
971
(
2006
).
35.
T.
Masaki
and
Y.
Kishimoto
,
J. Plasma Fusion Res.
81
,
643
(
2005
).
36.
W.
Feng
and
Y.
Kishimoto
, “
Relativistic soliton formation in laser magnetized plasma interactions
,”
J. Phys.: Conf. Ser.
(submitted).
37.
D. G.
Swanson
,
Plasma Waves
(
IOP Publishing
,
Bristol
,
2003
), Sect. 2.12.
39.
S.
Wiggins
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
, 2nd ed. (
Springer Verlag
,
2003
), Chap. 3.
You do not currently have access to this content.